Battlestar Galactica’s “Twelve Colonies of Kobol” Star System Found?

An image at radio wavelengths of a young stellar quadruplet. Credit: CfA/Nature/Pineda

An image at radio wavelengths of a young stellar quadruplet. Credit: CfA/Nature/Pineda

825 light-years away, in the constellation of Perseus, hides one protostar and three previously unseen gas concentrations that are undergoing gravitational collapse — basically embryos of soon-to-be baby stars. Found through the analysis of data from radio telescopes by astronomers at the Harvard-Smithsonian Center for Astrophysics (CfA), this tiny cluster of baby stars occupy a small volume only 10,000 AU across — meaning that they’d all easily fit within the confines of the boundaries of our solar system (yes, the Oort Cloud is the solar system’s outermost boundary).

This is exciting for a couple of reasons. Firstly, this little ‘stellar womb’ has given astronomers an opportunity to study the genesis of a multi-star system. Indeed, most stars in our galaxy belong to multi-star systems, whether that be binary or greater, and astronomers are currently trying to figure out whether they were born this way or whether, over time, stars jostled around and eventually became gravitationally bound. After analysis of the velocities of the protostar and stellar embryos, it appears that the masses are gravitationally interacting. In other words, it has the potential to mature into a quadruple star system in around 40,000 years, a minute amount of time in cosmic timescales. Although it is likely that the system will become unstable, possibly ejecting one or two of the stars in the process, it does provide observational evidence that multi-star systems can be born in a gravitational embrace.

A map of the Twelve Colonies via io9.com

A map of the Twelve Colonies via io9.com

But as I have a habit of linking astrophysical studies with science fiction imaginings, when I first saw this research, I immediately thought of the awesome re-imagined series’ Battlestar Galactica and Caprica.

Battlestar Galactica is set in the years following the Cylon attack on the Twelve Colonies of Kobol, which almost wiped out humanity in this far-flung part of the galaxy. The remaining survivors, headed by William Adama (Edward James Olmos), take to the stars in a fleet of ragtag spaceships in search of the fabled Earth. One of my favorite scifi storylines and favorite scfi TV shows. But I digress.

The Twelve Colonies consist of four stars — Helios Alpha, Helios Beta, Helios Delta and Helios Gamma — each with their own systems of planets, 12 in total, including capital world Caprica.

So that poses a question: Just because Battlestar Galactica imagines a quadruple star system (well, two binary systems in a mutual orbit), is it possible to have such a stable system of planets evolve in a multi-star system? Or are the gravitational interactions too complex for anything to coalesce and slot into stable orbits? Well, by understanding how multi-star systems evolve by finding examples like this embedded inside star forming molecular clouds, we may start to appreciate how common and how stable they are and whether accompanying planetary systems are a reality or something that will forever be confined to the Twelve Colonies.

READ MORE: Star Quadruplets Spied Growing Inside Stellar Womb (Discovery News)

On Mars, There’s No Asphalt

Curiosity's right-middle and rear wheels, bearing the scars of 488 sols of rough roving. Credit: NASA/JPL-Caltech

Curiosity’s right-middle and rear wheels, bearing the scars of 488 sols of rough roving. Credit: NASA/JPL-Caltech

If you’re like me, you hang off every news release and new photo from our tenacious Mars rover Curiosity. The awesome one-ton, six-wheeled robot is, after all, exploring a very alien landscape. But if there’s one thing I’ve learned from the mission, Mars is far from being a truly alien place. Sure, we can’t breath the thin frigid air, but we can certainly recognize similar geological processes that we have on Earth, and, most intriguingly, regions that would have once been habitable for life as we know it. This doesn’t mean there was life, just that once upon a time parts of Gale Crater would have been pretty cozy for terrestrial microbes. Personally, I find that notion fascinating.

But, way back in May, I noticed something awry with our beloved rover’s wheels. Curiosity’s beautiful aircraft-grade aluminum wheels were looking rather beaten up. Punctures had appeared. Fearing the worst I reached out to NASA to find out what was going on. After a friendly email exchange with lead rover driver Matt Heverly, I felt a lot more at ease: The damage was predicted; dings, scratches, even holes were expected to appear in the thinnest (0.75 mm thick) aluminum between the treads. On Mars, after all, there is no asphalt. Also, erosion is a slower-paced affair in the thin winds and dry environment — sharp, fractured rocks protrude, embedding themselves into the wheels at every slow turn.

Then, on Friday, in a news update on Curiosity’s progress, JPL scientists mentioned that they would be commanding the rover to drive over a comparatively smooth patch to evaluate the condition of the wheels as their condition is getting worse. But isn’t that to be expected? Apparently not to this degree. “Dents and holes were anticipated, but the amount of wear appears to have accelerated in the past month or so,” said Jim Erickson, project manager for the NASA Mars Science Laboratory at NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

So what are we looking at here?

curiosity-wheels-08-670x440-131220

All of the wheels are exhibiting wear and tear, but this particular ‘rip’ in aluminum is by far the most dramatic. But what does that mean for Curiosity? We’ll have to wait and see once JPL engineers have assessed their condition. Although this kind of damage has inevitably been worked into the the structural equations for the wheels’ load-bearing capabilities, whichever way you look at it, damage like this is not good — especially as Curiosity hasn’t even roved three miles yet.

But in the spirit of Mars exploration, Curiosity will soldier on regardless of how rough the red planet treats her.

Read more in my coverage on Discovery News, a location you’ll find me during most daylight (and many nighttime) hours:

Jovian Joviality: Juno is a Healthy Spaceship, On-Track for 2016 Jupiter Rendezvous

Artist's impression of the Juno flyby (NASA)

Artist’s impression of the Juno flyby (NASA)

Last week’s Juno flyby of Earth was an exciting event. NASA’s Jupiter-bound mission buzzed our planet on Wednesday (Oct. 9) only 350 miles from the surface, providing amateur astronomers with an opportunity to snapshot Juno as she flew past, stealing a little momentum from Earth and sling-shotting toward the largest planet in the Solar System. Alas, the flyby event wasn’t without incident.

The spacecraft dropped into “safe mode” shortly after its terrestrial encounter. Safe mode is a fail safe on spacecraft that protects onboard instruments from an unexpected condition. This can come in the form of a power spike or some other instrumental error. It is not known at this time what triggered this particular event, but the upshot is that Juno is back in its nominal state.

From a Southwest Research Institute news release:

“Onboard Juno, the safe mode turned off instruments and a few non-critical spacecraft components, and pointed the spacecraft toward the Sun to ensure the solar arrays received power. The spacecraft acted as expected during the transition into and while in safe mode.”

Juno’s planned trajectory was not impacted during the flyby and it is expected to make orbital insertion around Jupiter in July 2016.

The mission was launched from Cape Canaveral, Fla., in 2011 and, through a wonderful bit of orbital mechanics, was commanded to do one 2-year orbit around the Sun. Then, last week, it ended up where it started to use our planet as a speed booster, flinging it further out into the Solar System toward Jupiter’s orbit. This acceleration “freebie” was needed as the launch vehicle, an Atlas V rocket, didn’t have the oomph to propel the spacecraft deeper into space.

Once Juno arrives at Jupiter, it will give the gas giant a thorough full-body examination, investigating what lies beneath its clouds, how it generates its powerful magnetic field and how it evolved. The repercussions of Juno’s one-year primary mission will hopefully expose not only how Jupiter is formed, but how Earth evolved into its current state.

As Juno sped past on Wednesday, I allowed myself an early celebration of some fine flying by NASA scientists with a Gin & Tonic (or a Juno & Tonic) in my special JPL-bought Juno glasses.

Good luck Juno, will look forward to seeing you at Jupiter in a little under three years time!

MORE: Read my Discovery News post about the possibility of Juno exhibiting the mysterious “flyby anomaly.”

Curiosity Obsessing: Odd Mars Rock in Gale Crater

Panorama mosaic taken by Curiosity's Mastcam on Sol 413 of its mission inside Gale Crater. Credit: NASA/JPL-Caltech/MSSS

Panorama mosaic taken by Curiosity’s Mastcam on Sol 413 of its mission inside Gale Crater. Credit: NASA/JPL-Caltech/MSSS, edit by Ian O’Neill

As NASA has been shuttered by the insane U.S. government shutdown, there’s been little in the way of news releases from NASA (site offline) or NASA’s Jet Propulsion Laboratory (site still online, but no recent updates posted). In this Mars Science Laboratory science lull, I’ve found myself obsessively trawling the mission’s raw image archive so I can get my fix of high-resolution imagery from Curiosity’s ongoing mission inside Gale Crater.

While getting lost in the Martian landscape once more, I started tinkering with Curiosity’s raw photos; zooming in, adjusting the contrast, brightness and color. One thing led to another and I found myself stitching together various photos from the rover’s Mastcam camera. Being awash with photographs with little professional insight from mission scientists (as, you know, a noisy minority at Capitol Hill has gagged them by starving the agency of funds), I started to tinker in Photoshop, blindly trying to stitch a selection of Mastcam photos together to see an updated Martian panorama once more. This is the result.

Of particular interest, I found myself staring at the precariously-shaped boulder to the far right of the panorama. I can only guess what geological processes shaped it that way — Wind action? Ancient water flow? — or whether it had simply landed that way after getting blasted from an impact crater, but I was curious as to what JPL mission scientists are making of it. Alas, we’ll have to wait a little longer for the awesome Mars science to begin flowing again.

Here’s that rock:

curiosity-pano-mastcam-sol-413-131009-ins

It felt nice to be absorbed in the Mars landscape again. The photo stitching is rough in places (by far the hardest task was getting the brightness and contrast correct in each photo) and I lack any calibration tools to ensure the color is correct or that the orientation is sound, but it satisfied my curiosity as to what Curiosity was up to on the Red Planet. It has, after all, been over a year since the historic landing of the NASA mission and the regular news updates from NASA and JPL have become something of an intellectual opiate.

Going cold turkey, apparently, makes a space blogger itchy.

Image sources (from left to right):
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707000000E1_DXXX&s=413
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707001000E1_DXXX&s=413
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707002000E1_DXXX&s=413
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707003000E1_DXXX&s=413
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707004000E1_DXXX&s=413

Voyager 1, You’re Officially An Interstellar Mission

Voyager 1 is serious this time. Graphic by Alex Parker (@Alex_Parker)

Voyager 1 is serious this time. Graphic by Alex Parker (@Alex_Parker)

It’s kind of like landing on the moon. It’s a milestone in history. Like all science, it’s exploration. It’s new knowledge.” — Donald Gurnett.

After endless speculation, guesswork and data interpretation over the past year, it’s official: Voyager 1 is now an interstellar mission. It’s the first man-made object to leave the heliopause and enter the interstellar medium. This is history.

Read more: “Voyager: Goodbye Solar System, Hello Interstellar Space” on Discovery News.

Special thanks to Alex Parker for the image above, it sums the moment up quite nicely.

R2-D2 On The Moon? Why Not!

"R2, where are you?" On the moon... Credit: NASA/Corbis/Ian O'Neill/Discovery News

“R2, where are you?” On the moon… Credit: NASA/Corbis/Ian O’Neill/Discovery News

Sometimes, all it takes is the slightest of hints before I start Photoshopping stuff on the Moon that shouldn’t be there.

We’ve seen the Banff crasher squirrel steal Buzz Aldrin’s thunder.

We’ve seen the Sarlacc monster gobble up the LCROSS booster.

(Meanwhile, on Mars, something odd happened to rover Spirit.)

And now! We have R2-D2 trundling across the lunar surface as the perfect Moon rover design for dodging levitating Moon dust. Don’t ask me, it’s SCIENCE!

(Note: The inspiration for R2-D2 was not my idea, blame Astronomy Now’s Keith Cooper for that stroke of genius. But the ‘shopping is totally my doing. I have a lot of time on my hands, apparently.)

Read more: Why R2-D2 Would be the PERFECT Moon Rover