The Real Inspiration Behind “Project M”

The Project M android... haven't I seen you somewhere before?

The Project M android... haven't I seen you somewhere before?

As you know, I’m highly dubious about this “Project M” that has just surfaced on the intertoobs (I strongly suspect it’s a hoax). But doubts aside, I kept looking at that android throwing stones on the lunar surface thinking I’d seen that guy somewhere before. At first, I thought C3PO from Star Wars… but no! It’s this guy:

It's uncanny! Bender from Futurama explores the lunar surface (NASA/20th Century Fox/Ian O'Neill).

It's uncanny! Bender from Futurama explores the lunar surface (NASA/20th Century Fox/Ian O'Neill).

I think Futurama’s Bender would do a fine job exploring the moon.

About these ads

“Project M”? Let’s Not.

Doing for NASA what Star Wars did for sci-fi, send C3PO to the Moon! Huh?

Doing for NASA what Star Wars did for sci-fi, send C3PO to the Moon! Huh?

OK, so I have little idea about this project because there’s not much information circulating, but I hope it’s not real.

It looks like NASA’s Johnson Space Center is heading up a robotic mission to the Moon. No big surprises there as that plan is pretty much in alignment with the “Flexible Path” for the future of space exploration for the U.S. space agency. Also, now the Constellation Program has bitten the dust, we’re not going to see man return to the Moon any time soon.

So what’s the answer? Send a robot that looks like a human to the Moon instead!

As I said, there’s little information about “Project M” apart from what’s been posted on AmericaSpace:

Project M is a JSC Engineering Directorate led mission to put a lander on the moon with a robot within a 1,000 days starting Jan 1., 2010. “M” has significance in two ways. First, it is the Roman numeral for 1,000. And “M” is the first letter for “Moon”.

How is Project M different from past NASA projects?

  • No prime contractors.
  • No roadblocks.
  • Just use the best engineers in the world to get the job done on time.

There will be full press on this… including embedded media, full multimedia and social networking. Can you say “The Apprentice goes to Space?”

When will Project M begin? Next month? Next year? No, Project M has been “go” since Monday, November 9th.

But “M” is the first letter of “Missing the Point” too, but that hasn’t been mentioned.

The enthusiasm for a robotic mission to the lunar surface sounds fine and dandy, and it’s to be expected, but if they really intend to send a bipedal robotic man to the Moon within 1000 days, then NASA hasn’t learnt anything from the Constellation debacle. This smells like a publicity stunt with little to no direction and it would be a shame if serious funding is being put into it.

Could the bipedal robot just be a metaphor for the project? Possibly, but I’d have to question the common sense in doing that too.

Also, where’s the incentive (indeed urgency) to create a Manhattan Project-style group of engineers to rush this project to completion within 3 years? If the members of Project M think they can avoid the cumbersome red tape and cost overruns that NASA and its contractors have faced in the past, then great, but I don’t think that’s a reality for such an ambitious project that lacks direction.

Sure, there’s funding being ploughed into humanoid robot technology — such as the “Robonaut” that is being developed by JSC engineers and the car maker GM — but the real-world application of androids (robots designed to look and act like a human) is that they can assist human operators. Bipedal androids such as the one depicted in this promo video would be exploring (read: “picking up stones”) space by themselves. There are no humans working along side them and therefore no real reason to create them in the inefficient form of a human.

The human body isn’t exactly an optimized one for space exploration. The next robotic missions to the Moon and Mars will be rovers, with wheels, because guess what? That makes more sense than revolutionizing android technology, sending it to the Moon within 1000 days, only for it to fall over and not be able to stand back up. (I’m sure Project M would counter this argument and say that the technology would have matured to such an extent that the android would be able to stand up again, but why let it fall over at all?) The center of gravity needs to be low for stability and no matter how big you make a robot’s feet, it’s simply not going to be able to explore as efficiently as a wheeled or multi-legged all-terrain vehicle.

So, in short, I see this video as about as valuable as the ad-drawing Moon rover video. And we all know what I thought about that nonsense.

Source: NASAWatch, Universe Today

Much Ado About Apophis

Concept art for the ESA Don Quijote asteroid mission concept (ESA)

Concept art for the ESA Don Quijote asteroid mission (ESA)

Apophis is a 300 meter wide asteroid that caused a stir back in 2004. When NASA discovered the near-Earth asteroid (or NEO), it appeared to be tumbling in our direction Armageddon-style and the initial odds for a 2029 impact were 1-in-37. Understandably, people got scared, the media went nuts and astrophysicists were suddenly very interested in space rock deflection techniques.

Fortunately for us, NASA has downgraded the threat to a zero (note zero) chance of Apophis bumping into us in 2029, and lowered the risk of a follow-up impact in 2036 from a 1-in-45,000 chance to a 1-in-250,000 chance.

It’s important to note that NASA didn’t just pull these numbers out of a hat; the space agency has been tracking Apophis intently since its discovery, plotted its position and projected its location to a very high degree of precision. The more we watch Apophis, the more the world’s scientists are convinced that the asteroid poses a very tiny risk to life on Earth. In fact, giving anything a 1-in-250,000 chance of happening is more of a courtesy than a ‘risk.’ Granted, we’re talking about a global catastrophe should Apophis hit, but would you ever bet on those kinds of odds?

Apparently, the Russian space agency thinks it’s more of a game of Russian Roulette than NASA thinks.

I don’t remember exactly, but it seems to me it could hit the Earth by 2032,” said Anatoly Perminov, the head of Roscosmos, on December 30, 2009. “People’s lives are at stake. We should pay several hundred million dollars and build a system that would allow to prevent a collision, rather than sit and wait for it to happen and kill hundreds of thousands of people.”

What are the legal implications of asteroid deflection? Read: Space Experts to Discuss Threat of Asteroid Impact

Wait a minute. Does Perminov know something NASA doesn’t? Is he even referring to Apophis? You know, the same asteroid NASA has calculated that has a cat in hell’s chance of causing bother in 2036? And what’s this about the year 2032?

Just for the record, Perminov is indeed referring to Apophis, but he got the date wrong (Apophis does not make a flyby in 2032). Perminov also puts a price on saving hundreds of thousands of people… “several hundred million dollars” should do it, apparently.

On the one hand I’m impressed that Roscosmos is calling for some kind of anti-asteroid shield, but on the other, Perminov’s concern is terribly misplaced (and potentially damaging). His statement sounds as if he’s only just heard about Apophis and then thrown into a press conference unprepared, then asked what he’s going to do about this impending doom. Naturally, in that situation he would have blurted out the first thing that popped into his head: We need to save the world! However, this isn’t the first time he’d heard about Apophis.

Boris Shustov, the director of the Institute of Astronomy under the Russian Academy of Sciences, tried to repair the damage pointing out that Perminov was just using Apophis as a “symbolic example, there are many other dangerous objects we know little about.”

However, saving the world from a theoretical “dangerous object” that may or may not hit us for the next few hundred/thousand/million years is less likely to get funding that an imminent 2032… sorry, 2036 impact.

Although Perminov might sound reasonable in asking for asteroid deflection funding, using sensationalist means to try to leverage funding only serves to make the same funding hard to come by.

In the AGU 2009 meeting in San Fransisco last month, ex-Apollo astronaut Rusty Schweickart outlined his organization’s plans to deflect an asteroid should it pose a threat to Earth. The B612 Foundation points out that there is a ~2% chance of Earth being involved with an “unacceptable” collision in the next century (not by Apophis, but by another undiscovered asteroid), but Schweickart and his colleagues want to emphasize urgency, not panic.

An infrastructure needs to be put in place to deal with asteroid deflection, but this goal will only be hindered by unwarranted alarm by the likes of Perminov. Asteroid detection and deflection will be two critical skills mankind will need to develop for the long-term survival of life on Earth, but the head of Roscosmos is running the risk of making the issue sound more like a crazed rant than anything of substance.

Besides, when Perminov says, “Everything will be done according to the laws of physics,” perhaps he shouldn’t be in charge of messing around with the orbits of NEOs after all…

An Explanation for the Norway Cloud Spiral

The mysterious cloud spiral that appeared over Norway at 7.50am on Wednesday morning took the internet by storm. Every major news outlet was talking about it and Google Search was stuffed full of results.

Like with any unexplained phenomenon, the knee-jerk reaction of conspiracy theorists (and tabloid press, naturally) was that the beautiful blue-white glowing spiral was either of UFO origin (no, not of the “unidentified kind”, but of the “probing-alien kind”), top secret “energy weapon” origin, LHC origin (yes, the Large Hadron Collider black holes are back) or some other supernatural origin. Well, it would appear that only one of those options are partially correct.

All indications pointed to some kind of Russian naval military missile test (because, um, the Northern Fleet was carrying out missile tests in the White Sea at the time), and Doug Ellison, ace space 3D animator from UnmannedSpaceflight.com, put together a demo of how the missile scenario might have played out in the above animation.

I was captivated by his first animation on the phenomenon that Nancy Atkinson presented in her Universe Today post on the subject, but this new animation shows how a failed rocket stage could spin out of control, spiraling fuel into the atmosphere.

Although it might be tempting to rush to the extraterrestrial reasons for the spiral, it would appear the missile scenario is the most plausible answer.

But… there’s a chance that it could have been a wormhole opening up from another universe, allowing the Annunaki to return to Earth ahead of their Planet X invasion force in 2012, but I’ll leave that theory for the doomsday wingnuts to mull over.

Now THAT is what I call a fireball!

Three frames from the South African CCTV footage.

Three frames from the South African CCTV footage.

Having seen some footage of the South African fireball last weekend, I thought it was quite impressive. However, a new video looking along a Johannesburg motorway has appeared online, and it’s superb.

I can’t find much information about this event, but it happened on November 21st and no fragments have been found so far.

Just in case you were in any doubt as to how much energy is released when a chunk of rock hits our atmosphere, this should give you a good impression:

I could almost feel the heat and hear the *KABLAAAM*.

Welcome To My Lava Tube, Premium Lunar Condo Living*

This 65-metre-wide hole in the lunar surface extends at least 80 metres down and could be an opening into a larger lunar cave (Image: ISAS/JAXA/Junichi Haruyama et al.)

Let’s face it, us soft and squidgy humans don’t react particularly well to radiation, the vacuum of space or hypervelocity meteoroids. This being the case, how do we ever hope to settle on other worlds, particularly worlds with dust for a backyard and a sky flooded in radiation from the Solar System’s biggest nuclear reactor (the Sun)? To put it mildly, it’s not going to be easy. In fact, exploring and settling on other celestial bodies will the the biggest challenge us terrestrials will face in the next century.

So we start thinking locally, we start thinking “familiar”; where could we build a habitat that’s a stone’s throw from Earth, where we can do a full-scale practical test of our colonizing skills but be only a couple of days from home?

The Moon is that world and we are currently stumbling our way toward that goal. In fact, it is (currently) one of NASA’s main priorities, to get man back to the Moon by 2020 (although the Augustine Commission report was released today and presents many more options for the future of NASA). Once we do eventually get back to the Moon, our lunar explorers will use man made habitats, but what about longer, more permanent settlements?

We’re going deeper underground

In-situ mining of materials for building habitats and using the landscape to protect settlers isn’t a new idea, but we are beginning to acquire better observations of the Earth’s only natural satellite. And now, observations from the Japanese Kaguya spacecraft (that was deliberately crashed into the lunar surface in June) have been used to scout out a possible location for a future permanent habitat.

Cavemen 2.0 (NASA)

Cavemen 2.0 (NASA)

It may be hard to believe, but the Moon was once a very hot body, where molten rock began to cool shortly after formation. This molten rock eventually solidified, but in doing so, lava burrowed out long channels known as sinuous rilles. These rilles are a sure sign that lava once flowed there. However, scientists have known for some time that beneath these rilles, lava tubes may also hide. The lava tubes formed when the remaining molten rock flowed away, leaving an encrusted layer of rock surrounding a closed network of tunnels.

A lava tube with a view

However, this is the first time a hole in the roof of one of these lava tubes has been found. This hole, for obvious reasons, has been dubbed “a skylight,” and Junichi Haruyama and the SELENE/Kaguya team have been working hard to seek out such features. Their hard work has just paid off.

This is the first time that anybody’s actually identified a skylight in a possible [lunar] lava tube,” said Carolyn van der Bogert, a co-investigator on the team from University of Münster in Germany, of the discovery in a region of the Moon’s near side in Marius Hills.

The skylight measures 65 metres wide and it is thought to extend 80 metres deep. The hole is right in the middle of a rille, indicative of the presence of a lava tube 370 metres across. It is currently unknown whether the skylight allows access to the lava tube (access may be blocked by rubble or solidified magma), but there is the tantalizing possibility that this hole could be used by astronauts to access an underground cave.

Anti-radiation living

Basalt is an extremely good material for radiation protection. It’s free real estate ready to be exploited and modified for human use,” said Penny Boston of the New Mexico Institute of Mining and Technology in Socorro. It’s not exactly a leap of the imagination that locations like the Marius Hills skylight could become very valuable regions when space agencies and potential lunar companies need a permanent foothold on the Moon.

A scene from the movie "Moon" with Sam Rockwell

Until we are able to set foot back on the Moon’s surface, we must rely on robotic explorers to do the reconnaissance work (indeed, that is the main priority for NASA’s Lunar Reconnaissance Orbiter, a satellite capable of snapping images 10× sharper than this Kaguya picture), but the fact remains, features like this are very appealing to help protect us humans from the ravages of space.

Bored of the Moon? Set up home in a Martian divot!

Speaking of extraterrestrial housing options, Mars has some trendy sinkholes that might be a little more spacious than your average lunar lava tube

*Technically, it would be a “condo“; anyone living in the lava tube would own the space inside, they wouldn’t own the lava tube itself. We all know that no one can “own” the Moon don’t we? You can throw away that “Congratulations! You’re Now The Proud Owner Of One Acre Of Lunar Real Estate!” certificate, it’s about as valid as those “I Need Your Bank Account Details To Deposit $1 Million” Nigerian royalty emails.

Source: New Scientist. With a special thanks to @foundonmars for the tip!

First Images of LCROSS Centaur Impact Plume Released

The lunar dust plume as seen 15 seconds after Centaur impact. The size of the plume was approximately 6-8 km wide at this time (NASA)

The lunar dust plume as seen 15 seconds after Centaur impact. The size of the plume was approximately 6-8 km wide at this time (NASA)

Rising a mile high and up to 5 miles wide, the impact plume of the spent Centaur rocket was observed by the NASA LCROSS shepherding probe before it travelled through the cloud of dust and crashed 4 minutes later.

The lack of an observed dust plume has been the cause of much confusion to people who watched the events unfold in the early hours of October 9th. NASA publicised the impact event as if it was going to be an explosion of dust (and possibly ice), observable from telescopes on Earth. To say the mission finale was a disappointment is an understatement.

Following the impact, NASA responded by saying that although infrared images proved the Centaur crashed on target (and a 20 meter-wide crater was created), the lack of an accompanying plume could mean that the mass hit the side of a crater (therefore blasting debris at an angle), or it hit a region devoid of dust and water ice, or the plume was simply less obvious than expected. Now that NASA has released new images of the impact, it would appear the latter may be the case; the plume was just less spectacular than the promo videos depicted.

Nine instruments on board LCROSS captured impact sequence, but until now it was unknown whether an impact plume occurred. Now NASA has confirmed that an impact flash, plume and crater were all generated.

There is a clear indication of a plume of vapor and fine debris,” said Anthony Colaprete, LCROSS principal investigator. “Within the range of model predictions we made, the ejecta brightness appears to be at the low end of our predictions and this may be a clue to the properties of the material the Centaur impacted.”

So the number-crunching continues as we wait to find out whether water was contained within that plume. However, judging by the faint cloud of ejecta, I’m thinking dreams of a H2O reservoir in Cabeus crater might be short lived.

Source: NASA, LA Times. A special thanks to @jamerz3294 for the tip!

Did NASA “Bomb” the Moon? Kinda

NASA possesses Weapons of Moon Destruction, obviously.

There’s been a lot of criticism concerning the media’s ability to report science recently. After all, what is “good” science reporting? The tabloid press is well known for hyping up scientific endeavour, and although some news outlets deliberately fill their columns with hyperbole, it doesn’t necessarily mean the science is being misrepresented, it just means the column in question is making a mountain out of a molehill.

Take Friday morning’s NASA LCROSS impact with the Moon. Those of us that were following the action on the various news outlets and online feeds were astonished by the sheer amount of fear, misinformation, disinformation and general weirdness that was being banded about. To be honest, I was shocked.

[I actually have a theory about one of the reasons why LCROSS was a particular target for many conspiracy wingnuts and doomsday woo, but I'll save that for another article I'll be writing shortly.]

Although a lot of the stuff was total silliness (i.e. the Moon feels pain, LCROSS might knock the Moon off it’s axis, many moonpeople might die etc. etc.), many worried individuals were concerned by the reports from the mainstream press. Let’s have a look at one of the claims being disseminated by a wide variety of news outlets in the run-up to, and the days following, LCROSS: The Moon was being “bombed” by NASA.

Did NASA “bomb” the Moon or not?

A huge number of people have a problem with the word “bomb” when connected with the LCROSS mission (I’m not fond of the description either). Could this one word be indicative of bad journalism? For the scientifically-minded, “bomb” doesn’t sound very scientific and would rather use “impactor.” For the non-specialist, “bomb” conjures thoughts of war, violence and Al Qaeda.

Is it just creative writing? Is it an inaccurate term? Is it wrong? First off, let’s look at the definition of “a bomb.”

bomb. n. An explosive weapon detonated by impact, proximity to an object, a timing mechanism, or other means.

The LCROSS Centaur was certainly not manufactured as a conventional weapon (as in, it didn’t carry explosives and couldn’t “detonate”), but just by its mass, could it cause an explosion like a bomb? In the case of the above definition, I’m referring to the “or other means” part.

Energy is energy

The Centaur was empty of propellent when it was sent careening toward the lunar south pole, but it still had a mass of 2366 kg (the size of an SUV). At the time of impact, it was travelling at a velocity of 2.5 km/s (2500 m/s). From this information alone, we can calculate the kinetic energy of Centaur at the moment it slammed into the lunar surface.

Ekinetic = 1/2 mv2 = 1/2 × 2366 (kg) × 25002 (m/s) = 7.4×109 Joules

This is the total energy the Centaur had when it was speeding toward the Moon, and according to basic physics energy is always conserved. So, when the Centaur ate Moon dust, where did this energy go?

We know energy wasn’t lost through the production of sound waves, as there’s no atmosphere on the Moon — In space, no one can hear your rocket go *bang* (although seismic waves would have been generated, propagating through the Moon’s surface). Also, lots of chunks of rock (from the surface) and shards of metal (from the Centaur) would have been ejected from the crater, each piece carrying a little piece of that kinetic energy away from the impact (much like very high-energy shrapnel). A lot of rock was displaced too, creating a crater 20 meters in diameter and 3 meters deep. Much of the kinetic energy will have also been converted to heat and light (the “flash” of the impact was captured by the LCROSS infrared camera).

What with all this heat, light and shrapnel, the Centaur impact sure is sounding like an exploding bomb. If you convert the 7.4×109 Joules into units more synonymous with weaponry, we find that the energy released during the Centaur impact was the equivalent of 1.8 tonnes of TNT exploding. That’s the size of a small bunker-busting bomb.

What’s more, kinetic weapons are a well-known method to take out orbiting satellites, so this concept isn’t a new one.

As much as it pains me, using an inflammatory statement like “NASA Bombed The Moon” is a correct analysis of the effects of the Centaur dead-weight hitting the Moon. However, the press milked “the Moon bombing” way beyond what I’d consider to be reasonable, taking full advantage of the violent connotations associated with this incredible NASA mission to probe for water on the Moon.

I think that people are apprehensive about it because it seems violent or crude, but it’s very economical.” –Tony Colaprete, principal investigator for LCROSS (Feb. 2008)

What REALLY Happened to the LCROSS Centaur?

<conspiracy mode>

In the early hours of Friday morning at 4:31am, the spent Centaur rocket from the NASA LCROSS mission slammed into the surface of the south pole of the moon. What was the point in that?

Well, NASA was hoping that the tumbling chunk of metal the size of a small bus would kick up a huge plume of dust. Following 4 minutes behind was the shepherding LCROSS spacecraft, also on a kamikaze dive, hoping to drop through the plume, sensitive instruments ready to analyse the dust for water.

I know what you’re thinking: what right does NASA have to BOMB the Moon? They have NO RIGHT AT ALL!!

It turns out that they are actually waging a top secret war against the population of peaceful extraterrestrials that live on the far side of the Moon. This “experiment” was in fact a reckless attack against a superior alien civilization, intended to strike fear into the hearts of the aliens.

If you were to believe the NASA promo video of the event, this should have been spectacular, vast quantities of lunar regolith blasting into space… it should have been akin to the biggest Fourth of July firework detonating. This “shock and awe” tactic is typical of the US space agency. The huge mass of the Centaur (a little under 2400kg), combined with its break-neck speed (1.5 miles per second) should have unleashed the equivalent energy of a tonne of TNT exploding. However, what NASA didn’t tell us was that Centaur was also carrying plutonium, so the explosion should have been a LOT bigger, easily visible to the naked eye.

But what did we see? Nothing. What did NASA see? Nothing. So what happened? Well, the answer to that is a little more compelling than what NASA is telling us.

Yes, they can show us images of a meagre “flash” as the Centaur hit inside a lunar crater, but I don’t think Centaur hit the Moon at all… the Centaur rocket was swallowed by the Moon.

Don’t believe me? Moments before impact, NASA’s lunar satellite — the Lunar Reconnaissance Orbiter (LRO) — was approaching the location and it took this photo. What you see here will shock you. It will astound you. And what’s more, it’s REAL.

Aliens DO live on the Moon, and they were prepared for the NASA bombing…

lcross-conspiracy

</conspiracy mode>

I’m sorry, I couldn’t resist. In the run-up to the LCROSS impact, the sheer amount of crazy conspiracy theories hit fever-pitch (I blogged about it on Space Disco 2 hours before impact). Some of my favourite theories involved alien civilizations on the lunar surface, plutonium on LCROSS (to destroy the Moon), the “fact” that it was all just a publicity stunt and the LCROSS mission didn’t exist at all… and the strange theory that the Moon feels pain.

Yawn.

A polite message to the conspiracy theorists: Come on people, stop making stuff up and understand the real science. You might find reality more interesting than your twisted fantasies.

Image: The Sarlacc pit monster from Star Wars, Copernicus lunar crater and the LCROSS Centaur rocket. Photoshopping: Me.

Oops… I really geeked out this time, didn’t I.

Moon Water, Confirmed

moon-water

The biggest factor hanging over human settlement of other worlds is the question of water. We need it to drink, we need it to cultivate food, we need it for fuel (indeed, we need it for the first lunar microbrewery); pretty much every human activity requires water. Supplies of water could be ferried from Earth to the Moon, but that would be prohibitively expensive and ultimately futile. For us to live on the Moon or further afield, H2O needs to already be there.

Ever since the Apollo lunar landings when samples of rock were transported to Earth we’ve been searching for the mere hint of this life-giving molecule. There have been indications that the lunar regolith may indeed contain trace amounts of the stuff, but on the whole, scientific endeavour has yet to return evidence of any large supply of water that could sustain a colony.

Until today.

Up until now, scientists haven’t been able to seriously entertain the thought of water on or near the surface of the Moon, apart from in the depths of the darkest impact craters. However, data from the recently deceased Indian Chandrayaan-1 mission has supported data taken by the Cassini probe (when it flew past the Moon in 1999 on its way to Saturn) and NASA’s Deep Impact probe (which made several infrared observations of the lunar surface during Earth-Moon flybys on its way to the 2010 rendezvous with Comet 103P/Hartley 2). Both Cassini and Deep Impact found the signature of water and hydroxyl, and now, a NASA instrument on board Chandrayaan-1 reinforces these earlier findings.

The NASA-built Moon Mineralogy Mapper (M3) on board the Indian satellite detected wavelengths of light reflected off the surface that indicated hydrogen and oxygen molecules. This is convincing evidence that water is either at, or near, the lunar surface. As with the previous measurements, the water signal gets stronger nearer the lunar poles.

So what does this mean for the future of manned space exploration? Although water has been detected, this doesn’t mean there are huge icy lakes for us to pitch a Moon base and pump out the water. In actuality, the signal indicates water, but there is less water than what is found in the sand of the Earth’s deserts (you can pack away the drinking straws now).

It’s still pretty damn dry, drier than anything we have here. But we’ve found this dynamic, ongoing process and the moon was supposedly dead,” University of Maryland senior research scientist Jessica Sunshine told Discovery News. “This is a real paradigm shift.”

If there are widespread water deposits (despite the low concentrations), even in regions constantly bathed in sunlight, there is huge potential for water deposits in those mysterious, frozen craters. Interestingly, these measurements indicate that the water may not have just been deposited there by comets; the interaction between the solar wind and the existing lunar mineralogy could be a mechanism by which lunar ice is constantly being formed.

Every place on the moon, at some point during the lunar day, though not necessarily at all times, has water and OH [hydroxyl],” Sunshine said.

We may see self-sufficient lunar colonies yet. But the saying “getting blood out of a stone” should probably be replaced with “getting water out of the lunar regolith”

Next up is NASA’s LCROSS mission that is scheduled to impact a crater in the south pole on October 9th. Analysis from the impact plume will supplement this positive Chandrayaan-1 result, hopefully revealing yet more water in this frozen region.

Sources: Discovery News, Space.com, Times.co.uk