Venus Transit: Streamed LIVE from Mt. Wilson, California!

Today, at 2:45 p.m. PDT (5:45 p.m. EDT or 10:45 p.m. GMT), be sure to tune into the extra special Venus transit live video feed from the famous Mt. Wilson Observatory. I will be there, co-hosting a pretty awesome live event from the historic site with Mike Simmons, President and Founder of Astronomers Without Borders. We also have a surprise, rather sci-fi announcement in store too. For a run-down of all the festivities and the live feed, take a look at the AWB transit pages.

I will be surrounded by real astronomers with huge telescopes, so there will likely be lots of opportunities to see me geek out over some awesome views of this once-in-a-lifetime event (well, two if you saw the 2004 transit… or if you’re really young and live to see the 2117 Venus transit!). I will also be taking my patented “eclipse viewing” kit — a $1 pair of eclipse glasses and my Nikon CoolPix camera — to see if I can get a very amateur photo of Venus’ silhouette!

See you at the summit!

About these ads

SpaceX’s Dragon: The Dawn of a New Age for Space Exploration?

SpaceX's Falcon 9 carries the Dragon capsule to orbit (NASA TV)

SpaceX's Falcon 9 carries the Dragon capsule to orbit (NASA TV)

This morning, at 12:44 a.m. PDT, a rocket was launched from Cape Canaveral Air Force Station Space Launch Complex 40. It wasn’t the biggest of rockets; it wasn’t carrying a particularly exciting payload, either. But it may well represent a crossroads in spaceflight history.

Space Exploration Technologies, or SpaceX, saw a perfect launch of its Falcon 9 rocket. Sporting nine Merlin engines — engines designed and built in-house — the rocket blasted off exactly as planned even though the first launch attempt on Saturday was scrubbed. The “failed” attempt — that was aborted automatically in the last second due to a faulty valve in number 5 engine — was actually a success unto itself; a means of ensuring the launch abort systems were working as they should.

But Saturday is a distant memory as, at right at this moment, there’s an unmanned spacecraft chasing after the International Space Station set for a historic orbital rendezvous in three days time. The Falcon 9 operated as it should and so has the Dragon capsule. So far.

Assuming everything else goes to plan, what does this mission mean for the future of spaceflight?

This is no silver bullet to solve all our spaceflight woes, but it could be the start of something a little bit special. Elon Musk, Internet entrepraneur and SpaceX CEO, has no qualms about thinking big. His enthusiasm for space exploration is infectious and his eye for applying a business model to rocket science is, so far, genius. In a world driven by politics and money, he’s found a way of tying the two together to give the noble effort of pushing mankind’s frontiers an accelerated start. He’s eying Mars. If SpaceX can build rockets and spaceships, perhaps companies, governments and institutions will buy his company’s services to travel through interplanetary space.

Does this mean Mars “taxi rides” are in our future? Perhaps.

But spaceflight history is littered with failed start-ups, accidents and expense, so time will only tell how far SpaceX and other private spaceflight companies can push mankind’s exploration envelope.

I can’t help but be enthusiastic for Musk’s endeavour, however. Remember Sept. 28, 2008, when SpaceX became the first company to launch its own rocket into orbit? That was only four short years ago.

It may be too early to get excited over seeing the Dragon docked to the ISS, but the importance of such an event shouldn’t be ignored. Once SpaceX proves it can be done, this could be a paradigm shift. Space exploration could be driven by enterprise and exploration, potentially transforming us into a multi-planetary species.

Listen to the “Which Way, LA” show hosted by Warren Olney where we discuss SpaceX and commercial space.

Mars Flips Us The Bird

A curiously shaped Mars dune (NASA/JPL/University of Arizona)

A curiously shaped Mars dune (NASA/JPL/University of Arizona)

Is that a bird? Yes, I can see a bird! A bird on Mars! Aliens must have created it to send us a message! Actually, no, it’s a curiously shaped dune on the Martian surface. My subconscious brain has just processed a familiar shape and my conscious brain did the rest.

Captured by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter (MRO), this dune is located in the north polar sand sea (commonly referred to as the “north polar erg”) and it is undergoing the process of defrosting. As the Red Planet’s northern hemisphere is entering springtime, the increased intensity of sunlight is causing carbon dioxide ice (and some water ice) to sublimate into the atmosphere. The ice can be seen as frosty white patches, whereas the dark patches are likely freshly deposited particles from carbon dioxide geysers erupting from the surface.

This is all well and good — how amazing it is to be witnessing the onset of Martian spring at such high resolution! — but it’s the bird head (possibly some kind of falcon?) that drew me into reading about this fascinating HiRISE update in the first place.

This is a fantastic example of pareidolia, a psychological phenomenon that makes us see familiar images in apparently random assortments of shapes. It’s the same phenomenon that makes us see the shapes of bunnies in clouds and the face of Jesus in burnt toast. Interestingly, the HiRISE folks didn’t point out the bird head in this particular photo, but considering they recently brought us the “Elephant On Mars,” I’m thinking this is no coincidence. Those sneaky scientists. During the fun elephant escapade earlier this month, HiRISE scientist Alfred McEwen decided to use the “elephantolia” as an opportunity to teach some really cool Martian geology and make us aware of Martian pareidolia. (Apparently an elephant couldn’t outrun an ancient flood of Mars lava, who knew!)

Right around the same time, images were released of the shape of a parrot in a Martian mesa. Unfortunately, the parrot researchers weren’t joking — they seem to wholeheartedly believe some form of alien intelligence is involved. But as demonstrated by the new HiRISE image, the parrot research is totally based on pareidolia (or “parrotolia”). They saw a parrot, and they have spent years proving it’s a parrot. The logical misstep is astonishing.

In fact, I found this whole thing so astonishing that I plucked this particular parrot to death in my most recent Al Jazeera English op-ed. And yes, I used Monty Python to emphasize my point.

Many thanks to Jason Major for pointing out the HiRISE pareidolia!

Mystery Mars Cloud: An Auroral Umbrella?

The strange cloud-like protursion above Mars' limb (around the 1 o'clock point). Credit: Wayne Jaeschke.

The strange cloud-like protursion above Mars' limb (around the 1 o'clock point). Credit: Wayne Jaeschke.

Last week, amateur astronomer Wayne Jaeschke noticed something peculiar in his observations of Mars — there appeared to be a cloud-like structure hanging above the limb of the planet.

Many theories have been put forward as to what the phenomenon could be — high altitude cloud? Dust storm? An asteroid impact plume?! — but it’s all conjecture until we can get follow-up observations. It is hoped that NASA’s Mars Odyssey satellite might be able to slew around and get a close-up view. However, it appears to be a transient event that is decreasing in size, so follow-up observations may not be possible.

For the moment, it’s looking very likely that it is some kind of short-lived atmospheric feature, and if I had to put money on it, I’d probably edge more toward the mundane — like a high-altitude cloud formation.

But there is one other possibility that immediately came to mind when I saw Jaeschke’s photograph: Could it be the effect of a magnetic umbrella?

Despite the lack of a global magnetic field like Earth’s magnetosphere, Mars does have small pockets of magnetism over its surface. When solar wind particles collide with the Earth’s magnetosphere, highly energetic particles are channeled to the poles and impact the high altitude atmosphere — aurorae are the result. On Mars, however, it’s different. Though the planet may not experience the intense “auroral oval” like its terrestrial counterpart, when the conditions are right, solar particles my hit these small pockets of magnetism. The result? Auroral umbrellas.

The physics is fairly straight forward — the discreet magnetic pockets act as bubbles, directing the charged solar particles around them in an umbrella fashion. There is limited observational evidence for these space weather features, but they should be possible.

As the sun is going through a period of unrest, amplifying the ferocity of solar storms, popping off coronal mass ejections (CMEs) and solar flares, could the cloud-like feature seen in Jaeschke’s photograph be a bright auroral umbrella? I’m additionally curious as a magnetic feature like this would be rooted in the planet’s crust and would move with the rotation of the planet. It would also be a transient event — much like an atmospheric phenomenon.

The physics may sound plausible, but it would be interesting to see what amateur astronomers think. Could such a feature appear in Mars observations?

For more information, see Jaeschke’s ExoSky website.

Put the Weather Balloon Back In The Box

Really? Sushi and beer "in space"? What's next?

Really? Sushi and beer "in space"? What's next?

What the hell is going on with this weather balloon craze? It seems that everything from beer to sushi is being sent “into space” these days. There’s only one problem… weather balloons don’t go into space!

Launching random crap into the stratosphere may be fun and give some companies a fleeting marketing opportunity, but please, quit it. Weather balloons should be used for… um, I dunno… high altitude research. And for high school/university students’ learning opportunities/science outreach. Oh, and Roswell conspiracy theories. But that’s it.

Just because you have a small camera with a gazillion megapixels, a credit card and a GPS tracker, the logic of buying a huge balloon and filling it with helium, strapping your camera to it and then running across the countryside to retrieve the wreckage seems silly. Sure, you get some nice video of cloud tops from an altitude of 20 miles, but you’re not the first to do this!

Having said all that, if you do feel compelled to create yet another YouTube video of a weather balloon launch, knock yourself out. But please, please, please don’t include the word “space” in the title, even the BBC gets confused (apparently, that weather balloon-launched Lego man went “into orbit”!). Space starts above 62 miles (known as the Kármán line). Weather balloons can make it to around 25 miles before popping. By no stretch of the imagination can balloons make it into “space.”

Also, weather balloons don’t take stuff on a “suborbital flight.” That’s about as “suborbital” as me taking a flight to Vegas.

Gripe over.

On Gingrich’s Moon Base Plan (and Why It Won’t Happen)

A base on the Moon? That would be awesome! But it can't be done for profit... yet (ESA).

A base on the Moon? That would be awesome! But it can't be done for profit... yet (ESA).

For more on this topic, you can listen to me chat with BBC 5live’s Dotun Adebayo (from “Up All Night” on Jan. 28 — at 1hr 26mins into the show) and check out the Al Jazeera article (“Gingrich promises US ‘moon base’ by 2020“) I was interviewed for.

In case you haven’t heard, one of the Republican presidential candidate hopefuls, Newt Gingrich, has stellar plans for the U.S. in space. Should he make it though the GOP primaries and beat President Obama in this year’s presidential elections and make it to a second second term in office, the United States of America is going back to the Moon! *applause* *cheers* *ticker tape raining down on Times Square*

“By the end of my second term, we will have the first permanent base on the moon and it will be American!” Gingrich declared on Wednesday when he was outlining his plans for NASA and the U.S. space industry during his Florida GOP campaign.

A lot of what Gingrich said seemed to make sense — less NASA bureaucracy, more commercial investment, space prizes — but the one thing the majority of the media fixated on is the “Moon base” thing.

Generally speaking, any promises made during a presidential campaign, let alone a GOP presidential candidate primary, should be taken with a big pinch of salt. Gingrich, who has been hammered by bad press and negative ad campaigns by opponent Mitt Romney, decided to go “all in” during his Space Coast speeches in the hope of persuading Florida — a key swing state — that he was their man to reinvigorate the state’s major industry.

But it looks like his promises have gone a little too far.

Sending men to the moon during the Apollo era cost the U.S. $170 billion (in today’s money). This cost encompassed the development of manned space flight technology — from the massive Saturn V rockets to the Lunar Modules. But to set up a Moon base (an American Moon base no less) the costs of developing the technology, building the base, creation of a Earth-Moon transportation infrastructure and maintaining lunar assets for many years would spiral into hundreds of billions of dollars.

But it’s OK, NASA wouldn’t be expected to pick up the bill, which is fortunate as the U.S. space agency’s budget stands at less than $18 billion (for 2012). In 1966, 60 percent of NASA’s entire budget was pumped into the Apollo Program, so if that were to happen again, NASA science would be a thing of the past.

Using incentives, Gingrich’s plan is to heavily involve private industry. 10 percent of NASA’s budget will be set aside for industrial “prizes” — presumably X PRIZE-like programs. Also, the lunar surface would be a “free-for-all” — corporations would dig in, mine and pillage the lunar surface for its treasures. And then there’s science! Don’t forget the science! SCIENCE will be done, because science is all kinds of awesome.

But there’s a juicy fly in the ointment that Gingrich appears to be ignoring: Where’s the incentive?

As we’ve already established, spaceflight is really, really expensive. Setting up a Moon base would be really, really, really expensive. The International Space Station (ISS) took international collaboration to build and maintain (not forgetting that NASA can’t even access this huge chunk of orbiting real estate without asking Russia for a hand), so whether or not you think $100 billion is a lot of dough for an orbiting outpost, “hundreds of billions” seems like a reasonable estimate for a Moon base. NASA simply can’t “go it alone” to set up an American base, it would need to be an international collaboration, or there would need to be a huge investment made by U.S. commercial interests.

Now, I’m no businessman, so I might be wrong, but companies like to see a return on their investments, right?

We could see similar deals between NASA and private space companies to courier people and cargo into space (like the COTS program that invigorates partnerships like the one between NASA and SpaceX), but again, we’d need to see significant investment by a government agency: NASA. How to get out of this government-funded loop? Let companies profit from the Moon’s resources — there must be gazillions of dollars to be made from that, right?

No.

You’ll hear many people discuss Helium-3 with huge enthusiasm, which is found in abundance on the lunar surface. Helium-3 is the much-touted fuel for fusion power plants. Fusion power is the world’s cleanest, most abundant energy resource; whoever controls the supply of Helium-3 from the surface of the moon could stand to make trillions!

Oh… wait. Fusion power plants? Yeah, we haven’t invented them yet.

What about using the Moon as a massive resource of precious metals? After all, the moon is made from the same stuff Earth is made of, gold and platinum should be hiding in that Moon rock. Why not set up vast strip mines and refineries? Hell, it would be far easier to extract raw materials and refine them in-situ on the Moon than mining asteroids.

But once again, there’s a big problem; it would cost far more to extract, refine and transport the material back to Earth (let alone the huge health & safety/insurance concerns with flying the stuff back to Earth, reentering tons of materials over populated regions) than the profit a company could stand to make from such an operation.

So, in summary, to build a Moon base it would cost a lot of money. In the current political and financial climate, there isn’t a cat in hell’s chance of seeing a U.S. government agency like NASA footing the bill. Private investment would need to be found. But companies don’t like risking tens (to hundreds) of billions of dollars unless they can see some potential for profit. A Moon base, for now, is not an investment.

Also, the Outer Space Treaty forbids any nation from “owning” any portion of the Moon — so sending U.S. companies to mine the Moon could be a pretty awkward scenario. This alone invalidates the “American Moon base” idea if it was being used for anything other than science purposes. Seeing a mining operation pop up in the Sea of Tranquility would be like BP building a refinery in the Antarctic. Sure, it can be done, but the international fallout would be horrendous (another factor that might dissuade corporate investment in the first place).

The modern world’s economy is based on growth, profit and the politics they motivate. Making money from space, in the near term, doesn’t involve bases on the Moon. Profit and growth can be found in government contracts and investment in cheap space launch alternatives. Space tourism, in the near-term, is also showing some promise. These areas of growth focus on basic space infrastructure — simply blasting stuff into orbit is a difficult and expensive task, private enterprise is currently innovating to fulfill this need. And they are doing it for profit.

A few decades from now, when our planet finally has a viable, sustainable infrastructure in space, talk of Moon bases and company profits may make more sense. But talk of building a base (let alone a Moon colony) when we don’t even have the rockets or spacecraft to get us there, is a bit like saying I’m moving to Hawaii, but there’s no aircraft or boats to get me there and… oh, by the way… I have to ship the bricks of my house to the middle of the Pacific Ocean so I can actually build a house when I get there.

Try selling that profit-making scheme to the CEO of Home Depot.

For more on this topic, you can listen to me chat with BBC 5live’s Dotun Adebayo (from “Up All Night” on Jan. 28 — at 1hr 26mins into the show) and check out the Al Jazeera article (“Gingrich promises US ‘moon base’ by 2020“) I was interviewed for.

The Funky Craters of Mars

A menagerie of strange divots (NASA/HiRISE/Univ. of Arizona)

A menagerie of strange divots (NASA/HiRISE/Univ. of Arizona)

As 2011 draws to a close, it’s time to reflect on my absenteeism from Astroengine. But it’s not my fault, I’ve been typing like a madman for these guys.

But that’s enough excuses, 2012 promises to be a huge year for space, and if I get my time management skills back up to scratch, there will be a whole lot more of the blogging thing going on over here too. So to kick things off I thought I’d share a cool slide show I’ve been working on for Discovery News with Ari Espinoza of the High-Resolution Imaging Science Experiment (HiRISE) — the awesome camera currently orbiting Mars aboard NASA’s Mars Reconnaissance Orbiter (MRO).

With the help of Ari, we managed to collect some weird-looking Mars craters (for the hell of it) and create a slide show with some of the strangest. Below are a few of my favorites, but be sure to check out the full slide show for more oddities!