What Happened to Mars Rover Spirit?

“A big rusty transporter came over the hill and the Jawas sold it for scrap metal…” — Paul Quinn

NASA is giving Mars rover Spirit one more month to signal that she’s still alive before search operations are scaled back and attention shifted to her sister rover Opportunity. Unfortunately, the prognosis isn’t good. It’s been a little over a year since Spirit last communicated and it’s looking increasingly likely she’s succumbed to a lack of energy and freezing conditions on the Martian surface.

But… something else might have happened.

“A big rusty transporter came over the hill and the Jawas sold it for scrap metal…” — Paul Quinn (via Facebook)

It’s not as if it hasn’t happened before, in a galaxy far, far away…

Credits: Main Mars vista with Spirit superimposed: NASA. Jawa sandcrawler and Jawa figures: LucasArts. Edit: Ian O’Neill/Astroengine.com. Inspiration: My mate Paul Quinn!

About these ads

The Ultimate Paternity Test: Are We Martian?

This rather outlandish, sci-fi notion comes straight from the fertile minds of researchers from MIT, the Massachusetts General Hospital and Harvard University who are proposing a biology experiment that could be sent on a future Mars surface mission. If their hypothesis is proven, we wouldn’t only have an answer for the age old question: Are we alone? but we’d also have an answer for the not-so-age-old question: Did life from Mars spawn life on Earth?

The idea goes like this: countless tons of material from Mars has landed on Earth. We know this to be true; meteorites have been discovered on Earth that originate from the Red Planet. These rocks were blasted from the Martian surface after eons of asteroid impacts, and the rocks then drifted to Earth.

If there was once life on Mars — a concept that isn’t that far-fetched, considering Mars used to boast liquid water in abundance on its surface — then perhaps some tiny organisms (not dislike the hardy cyanobacteria that is thought to have been one of the earliest forms of life to evolve on our planet) hitched a ride on these rocks. If some of these organisms survived the harsh conditions during transit from Mars to Earth and made it though the searing heat as the meteorite fell through our atmosphere, then perhaps (perhaps!) that is what sparked life on Earth.

You may have heard a few variations of this mechanism, it is of course the “panspermia” hypothesis. Panspermia assumes that life isn’t exclusive to just one rocky body like Earth, perhaps life has the ability to hop from one planet to the next, helped on its way by asteroid impacts. Not only that, but perhaps (perhaps!) tiny microorganisms could drift, encased in interstellar dust, akin to pollen drifting in the wind, seeding distant star systems.

Naturally, when considering the distance between the planets (let alone the light-years between the stars!), one might be a little skeptical of panspermia. But it certainly would help us understand how life first appeared on Earth. After all, it’s not as if the solar system has a natural quarantine system in place — if Mars had (or has) bacteria on its surface, perhaps they have been spread to Earth, like an interplanetary flu bug. Also, as experiments are showing us, microorganisms have an uncanny ability to survive in space for extended periods of time.

So, according to my esteemed Discovery News colleague Ray Villard, the MIT team led by Christopher Carr and Maria Zuber and Gary Ruvkun, a molecular biologist at the Massachusetts General Hospital and Harvard University, are proposing to build an instrument to send to Mars. But this instrument won’t be looking for signs of life, it will be testing the hypothetical Martian DNA and RNA. Should this interplanetary paternity test prove positive, proving a relationship between Earth Brand™ Life and Mars Brand™ Life, then this could be proof of some extraterrestrial cross-pollination.

Although this is complete conjecture at this time, as there is no proof that life has ever existed on Mars (despite what research in dodgy research journals tell us), it is certainly an interesting idea that would not only test the hypothesis of panspermia, but also give us a clue about the potential human colonization of Mars.

To quote Ray:

This could give us pause about sending humans to a germ-laden alien world. It would be an ironic twist on the H.G. Wells classic 1898 novel “The War of the Worlds,” where invading Martians succumb to the common cold from Earth microbes.

See, Wells’ Martian warriors should have done genome testing first.

The Day Aliens Invaded… [UPDATE]

UPDATE (Mon. 9:50 a.m. PT): Shocker. NASA refutes Hoover’s claims. Apparently his paper failed peer review for publication in the International Journal of Astrobiology… in 2007! More here: “NASA Refutes Alien Discovery Claim — Discovery News

Original post: On Saturday, a NASA astrobiologist announced his “irrefutable proof” that aliens — the size of bacteria — exist. Using a sophisticated electron microscope, Richard Hoover looked deep into meteorite samples to see complex fossilized microscopic structures that looked suspiciously like bacteria found here on Earth.

Some of the suspect alien microorganisms even resemble cyanobacteria, a basic microorganism that helped make early-Earth hospitable to life by producing oxygen. Cyanobacteria can live in space for extended periods of time; tests on the International Space Station have shown the single-celled specks are hardy little buggers, surviving in a kind of “suspended animation,” sleeping for months (even years) in vacuous, frozen, high-radiation conditions. When brought back to Earth, the critters come back to life.

Needless to say, when Hoover announced this discovery of “alien” microbes, I wasn’t the only one who was thinking panspermia, the hypothetical mechanism where life — in the form of a microbe like cyanobacteria — hops from one planet to the next encased inside meteoroids.

Is this really proof of aliens? Is it evidence for panspermia? Does this mean life on Earth may have been seeded by alien microbes stowing away inside chunks of space rock? Does mankind need to invent an anti(alien)bacterial handwash?! (I’ve watched The Andromeda Strain.)

As mentioned in my Discovery News article on the subject, I’m skeptical about Hoover’s claims. This isn’t because I think Hoover’s work is rubbish (I have yet to finish digesting his lengthy paper), it’s just the way he decided to publish his work. The online Journal of Cosmology isn’t exactly the best place to submit your paper if you want your research to be taken seriously. And why the hell he gave FOX News the “exclusive,” I have no idea.

Sure, Hoover has discovered some odd-looking, alien-looking, bacteria-sized shapes in meteorite samples (he’s even done some interesting chemical analysis on the micro-”fossils”), but he’s going to have to do a far better job at convincing the scientific community that they are extraterrestrials.

Personally, I think these dinky “fossils” are a little too well preserved. Perhaps a far simpler explanation can be found? *cough* Contamination. *cough*

I’d love to know what NASA’s official line is, they seem to be staying remarkably quiet considering one of their employees has just announced the discovery of ET…

Read more: “Has Evidence for Alien Life Been Found?

When Stardust Met Tempel, a Love Story

Comet Tempel 1 near Stardust-NExT close approach (NASA)

Comet Tempel 1 near Stardust-NExT close approach (NASA)

A NASA spacecraft, a lonely comet and a Valentine’s date with no comparison.

Last night, NASA’s veteran Stardust-NExT mission successfully visited its second comet, Tempel 1. Having already been visited by NASA’s Deep Impact mission in 2005, it’s hard not to wonder whether Tempel 1 was a little apprehensive. Deep Impact did lob a refrigerator-sized copper impactor into the comet’s surface during the 2005 encounter, so I think we can forgive the comet some pre-date jitters.

Fortunately, Stardust was the perfect date (no impactors, silverware, dishes or bottles were thrown), just a peaceful flyby, during which the spacecraft beamed dozens of photos back to Earth. To quote Joe Veverka, Stardust-NExT principal investigator: “It was 1,000 percent successful!”

Alas, although the date was a success, there won’t be the sound of wedding bells any time soon. Stardust is now powering away from the comet at a breakneck speed. Was it something Tempel 1 said?

For more on this Valentine’s rendezvous, have a read of my Discovery News article “Stunning Photos from a Comet Near-Kiss.”

Oh yes, and I got bored, so I created a rough animation of the flyby. Enjoy!

Astrology Shakeup: What’s Your New Sign? (FOX News Interview)

I join FOX News host Megyn Kelly (center) and astrologer Constance Stella (right) on America Live.

Today’s horoscope says: Expect some angry emails.

Early this morning I get the call from Lori, my Director at Discovery News, saying, “You’re appearing on FOX this morning!”

My morning-addled brain started wondering why. Was it because of the tech article I wrote about dousing superconductors in wine? Or was it about the Playboy Playmate picture that flew to the moon in 1969? Or had some massive piece of space news broken while I was asleep? Perhaps FOX News needed a space expert to explain some uber-cool cosmic discovery!

Alas, no.

They wanted me to explain an article I nearly didn’t bother writing: “Your Star Sign Just Got Rumbled.”

I nearly didn’t bother writing about this as I didn’t consider it “news.” I just saw a lot of fuss on Twitter about a change in the Zodiac and did some investigating. I won’t go over this non-news event again (you can read my article for the details), but for some reason the fact that astrology is bunk seemed to surprise people.

“I’m so depressed. How do I tell my wife that I’m now a Taurus?” — too funny.

The FOX News chat was fun, but there wasn’t nearly enough time to go into all the gory details. Have a watch, I thought it was quite entertaining. (I’ve heard that this YouTube video might not be available beyond the U.S. — let me know if you have problems.)

The upshot is that astrology isn’t a science. Astronomy is. So when scientists try to find some astronomical link between how the stars can influence our everyday lives — even shape our personalities — we will ultimately be disappointed. This frustration is evident in my article.

Astrologers acknowledge that there is a zodiacal shift — they’d be silly not to, there’s an obvious precession in the Earth’s rotation, or 26,000 year “wobble” — but this shift is in the “sidereal zodiac.” Astrologers have side-stepped this out-of-sync problem by pointing out that they use the “tropical zodiac” which is based on the seasons and not the positions of the constellations — Constance Stella touches on this in the FOX News interview. Hence why everyone getting worked up about a change in their star sign is erroneous. Sure, this fixes the problem, ensuring they keep 12 signs of the zodiac (avoiding the “extra” 13th constellation, the now famous Ophiuchus), but it begs the question: What’s the point in astrology if astrologers don’t care if there’s a drift between the traditional zodiac (written up by Babylonian astrologers 3000 years ago) and today’s corrected zodiac?

(Also, isn’t there another way of predicting future events through the seasons, split into 12 sections? Oh yes, it’s a… calendar.)

I think all this confusion only adds doubt in people’s minds about the validity of modern horoscopes. They are nothing more than fairy tales.

Before I get flamed in the comment boxes about me “trampling” on people’s beliefs and that astrologers have done nothing wrong, consider this. Astrology will always be here so long as people want to hear positive things about their future, regardless of the fact that it’s complete and utter nonsense. Most will call it “entertainment,” while others will spend a fortune getting “detailed forecasts” of junk from the likes of Jonathan Cainer. Where there’s belief in some supernatural “force” (not a real force by the way), there’s money and plenty of modern astrologers who will be able to make a living.

So there you go. A non-news event that culminated in an appearance on national television. While fun, I think I’ll be getting back to the science now…

M87′s Obese Black Hole: A Step Closer to the Event Horizon Telescope

The black hole lurking inside galaxy M87 has a mass of 6.6 billion suns, according to today's announcement (NASA)

Fresh from the Department Of I Really Shouldn’t Have Eaten That Last Binary, astronomers attending the American Astronomical Society meeting in Seattle, Wash., have announced a supermassive black hole residing inside the nearby galaxy M87 has a weight problem.

In fact, this galactic behemoth is obese.

With a mass of 6.6 billion suns, it is the biggest black hole in our cosmic neighborhood. “It’s almost on top of us, relatively speaking. Fifty million light-years — that’s our backyard effectively. To have one so large, that’s kind of extreme,” astronomer Karl Gebhardt, with the University of Texas at Austin, told Discovery News. The black hole’s mass was arrived at after Gebhardt’s team tracked the motions of the stars near the black hole using the Gemini North telescope in Hawaii. By analyzing the stars’ orbits, the mass of the black hole could be calculated.

Although it’s been known for some time that M87′s black hole might be slightly on the heavy side, 6.6 billion solar masses exceeds previous estimates.

Previously on Astroengine, I’ve discussed the exciting possibility of imaging a black hole’s event horizon. Radio astronomers have even modeled what they might see should a collection of telescopes participate in event horizon astronomy. Naturally, to see the shadow of an event horizon, the black hole a) needs to be massive, and b) relatively close. The first nearby supermassive black hole that comes to mind is our very own Sagittarius A* (Sag. A*) that camps out in the middle of the Milky Way. That would be a good place to point our first event horizon telescope, right?

Think again. Even before astronomers were able to pinpoint M87′s black hole mass, in 2009, researchers from the Max Planck Institute and University of Texas had estimated M87′s mass to be 6.4 billion suns. Although M87 is a whopping 2,000 times further away from Earth than Sag. A*, due to its mass, the M87 supermassive black hole event horizon shadow should appear bigger in the sky than Sag. A*’s. Today’s announcement is bound to stimulate efforts in the quest to directly image a black hole’s event horizon for the first time.

“Right now we have no evidence that an object is a black hole. Within a few years, we might be able to image the shadow of the event horizon,” Gebhardt added.

For more on today’s news, read Irene Klotz’s report on Discovery News: “Obese Black Hole Lurks in Our Cosmic Backyard

Can Spicules Explain the Mysteries of Coronal Heating?

Solar spicules as imaged by NASA's Solar Dynamics Observatory (NASA)

Solar spicules as imaged by NASA's Solar Dynamics Observatory (NASA)

There’s one recurring question I’ve been asking for nearly a decade: Why is the Sun’s corona (its atmosphere) so hot?

When asking this out loud I inevitably get the sarcastic “um, because the Sun is… hot?” reply. Yes, the Sun is hot, really hot, but solar physicists have spent the last half-century trying to understand why the corona is millions of degrees hotter than the solar surface.

After all, if the air surrounding a light bulb was a couple of magnitudes hotter than the bulb’s surface, you’d want to know why that’s the case, right? At first glance, the solar atmosphere is breaking all kinds of thermodynamic laws.

The Sun is a strange beast and because of its magnetic dominance, energy travels through the solar body in rather unfamiliar ways. And today, a group of solar physicists have put forward a new theory as to where the coronal energy is coming from. But they’ve only been able to do this with help from NASA’s newest and most advanced solar telescope: the Solar Dynamics Observatory, or SDO.

Using the SDO’s high-definition cameras and imagery from the awesome Japanese Hinode solar observatory, features previously invisible to solar astronomers have been resolved. The features in question are known as “spicules.” These small-scale jets inject solar plasma from the solar surface into the lower corona, but until now they’ve been considered too cool to have any appreciable heating effect.

That was until a new type of hot, high-speed spicule was discovered.

“It’s a little jet, then it takes off,” solar physicist Scott McIntosh, of the National Center for Atmospheric Research’s High Altitude Observatory, told Discovery News’ Larry O’Hanlon. “What we basically find is that the connection is the heated blobs of plasma. It’s kind of a missing link that we’ve been looking for since the 1960s.”

These Type II spicules blast hot multi-million degree Kelvin plasma at speeds of 100 to 150 kilometers per second (62 to 93 miles per second) into the corona and then dissipate. What’s more, these aren’t isolated events, they’ve been observed all over the Sun. “This phenomenon is truly ubiquitous and populates the solar wind,” said McIntosh.

While this research provides more clarity on coronal dynamics, McIntosh is keen to point out that Type II spicules probably don’t tell the whole coronal heating story.

NASA’s coronal physics heavyweight James Klimchuk agrees. “It is very nice work, but it is absolutely not the final story on the origin of hot coronal plasma,” he said.

“Based on some simple calculations I have done, spicules account for only a small fraction of the hot plasma.”

Klimchuk favors coronal heating through magnetic stresses in the lower atmosphere generating small reconnection events. Right at the base of the corona, loops of magnetic flux channeling multi-million degree plasma high above the Sun’s chromosphere become stressed and eventually snap. These reconnection processes produce sub-resolution nanoflare events — akin to small explosions releasing energy into the solar plasma, heating it up.

Another heating mechanism — a mechanism I studied during my solar research days (.pdf) — is that of wave heating, when magnetohydrodynamic waves (I studied high-frequency Alfven waves, or ion cyclotron waves) interact with the lower corona, heating it up.

But which heating mechanism injects the most energy into the corona? For now, although there’s plenty of theorized processes (including these new transient Type II spicules), we don’t really know. We can only observe the solar corona from afar, so getting a true grasp on coronal dynamics is very hard. We really need a probe to dive deep into the solar atmosphere and take a measurement in-situ. Although the planned Solar Probe Plus will provide some answers, it may still be some time before we know why the corona is so hot.

But it is most likely that it’s not one coronal heating mechanism, but a combination of the above and, perhaps, a mechanism we haven’t uncovered yet.

For more on this fascinating research, check out Larry O’Hanlon’s Discovery News article “New Clue May Solve Solar Mystery.”