It’s Official: “2012” Sucked

Just in case you didn’t know, Roland Emmerich’s 2012 wasn’t the best of movies.

Actually, from a science perspective, it sucked.

It sucked in so many ways that I can’t be bothered to list why it sucked (so have a read of my Discovery News review instead).

Now, I’m happy to announce that NASA agrees with me. They think 2012 sucked so much, they’ve branded it the most “scientifically flawed of its genre.”

Donald Yeomans, head of NASA’s Near-Earth Asteroid Rendezvous mission, agrees with what I’ve been saying all along (especially since all that “Institute for Human Continuity” bullshit hit the internet). He said at the Pasadena Jet Propulsion Laboratory meeting:

“The film makers took advantage of public worries about the so-called end of the world as apparently predicted by the Mayans of Central America, whose calendar ends on December 21, 2012. [NASA] is getting so many questions from people terrified that the world is going to end in 2012 that we have had to put up a special website to challenge the myths. We have never had to do this before.”

Even though NASA agreed that Bruce Willis’ Armageddon was bad, it couldn’t compete with the scientific atrocities 2012 inflicted on its audience. The killer neutrinos, planetary alignment, crustal shift, geomagnetic reversal and super-duper-massive tsunamis proved too much. 2012 has even toppled The Core as worst sci-fi science movie. Now that is impressive.

But what does it all mean? Apart from us science snobs having a chuckle on our blogs, I doubt it will make the blind bit of difference. Why? This is why:

“On the opening weekend of 2012, the movie pulled in 65 million in U.S. ticket sales and an additional $160 million internationally, easily covering the $200+ million budget.

Movies aren’t about scientific accuracy, and it would seem that the hype behind 2012 can stand alone as the biggest moneymaker of all.

Fear sells, science doesn’t. The subject of doomsday will always be a blockbuster. Unfortunately, through the miscommunication of science, fear is usually the end-product.”

– “2012” Sells Tickets, Sells-Out Science

Oh well, you can’t win ‘em all. Now, have a laugh:

Thanks to @mars_stu and @RogerHighfield for the inspiration.

EDIT: An earlier version of this blog post stated that the Science and Entertainment Exchange was involved with NASA’s decision to make 2012 “most scientifically flawed” movie in its list. I have received an email from the Exchange’s director that this is not the case. I have therefore edited any mention of the Exchange from the blog (even though my source, the Adelaide Now, still references the Exchange).

About these ads

Who Cares if Ashton Kutcher is Preparing for Armageddon?

So, it’s 2011. A brand new year. Who knows what it holds? Actually, I know what it holds. Trolls. In fact, 2011 will henceforth be the Year of the Troll. (Not the Year of the Rabbit, sorry Bun-bun.)

I’ve noticed a rather crazy uptick in the number of anti-science diatribes and wet doomsday theories in recent months. Most are due to questionable reports written on quasi-news websites (as debunked in “2012 Alien Invasion? Um, No.”), and others are down to the trolls who surf the web dropping comments under otherwise benign science articles. Could it be that Fakemageddon is a year away? Or has the use of computers been granted in kindergarten? Could be both.

Although I joke about the misguided individuals inventing tales of doom to sell books, there is a rather serious undercurrent to my 2012 ramblings. People genuinely worry about this stuff. Sure, I’m totally numb to all this 2012 tomfoolery — it’s all crap, honest — but I’m still receiving messages from readers who are convinced something bad is going to happen on Dec. 21, 2012.

(The only person I know who’ll have a bad time is my little sister, who’ll be turning 30 on that day — don’t worry sis, I’ll be there administering the vodka, it numbs the chronological pain, trust me.)

So where does that leave us? What can we do to divert the nonsense and bring some real science to the table?

For one thing, I’m going to keep writing about the crackpots perpetrating these silly myths through 2011 and beyond. Although fellow debunkers and myself have been under attack recently for even mentioning the 2012 thing — something about a dead horse and a good beating — it’s important to inject common sense into the Internet whenever nonsense appears. If these doomsday theories go unchecked, for some, science and pseudoscience may become confused.

This is where the “Truth Squad” (as MSNBC science editor and Cosmic Log space maestro Alan Boyle has dubbed us) comes in, and I’m pretty sure all space science bloggers will be on the lookout for the doomsayers’ tall stories.

So, in conclusion, if you read something with an eerie 2012 flavor on the internet, be sure to check out my handy dandy “How Do You Spot Science Abuse in the Social Media Soup?” cheat sheet.

Also, don’t pay attention to celebrities who are obviously getting a little hyped up on the doomsday juice. No, I don’t think Ashton Kutcher really has anything to worry about in the near future, but if Armageddon works as a workout motivator… well, good for him (besides, I think he might have been taken out of context, so also look out for Huffington Post articles that try to make mountains out of molehills).

That is all.

Happy New Year!

PS. I hope to make Astroengine.com a little more productive through 2011. But in case you’re wondering what I’m up to, be sure to pop over to Discovery News, I’m always there.

National Geographic Feature: “Star Struck” by Ken Croswell

An all-sky image of the Milky Way (Serge Brunier/NASA)

An all-sky image of the Milky Way (Serge Brunier/NASA)

As promised, here’s an excerpt from astronomer Ken Croswell’s “Star Struck,” a National Geographic featured article from the December 2010 edition that takes us on a fascinating tour of the Milky Way.

Croswell discusses recent discoveries of hypervelocity stars, why planets are rare in the outermost reaches of our galaxy and the black hole hiding inside the galactic core. The Astroengine article “Life is Grim on the Galactic Rim” gets a mention as Croswell describes metal-poor stars and why life might be unlikely in those systems.

From “Star Struck”:

It’s hard to be modest when you live in the Milky Way. Our galaxy is far larger, brighter, and more massive than most other galaxies. From end to end, the Milky Way’s starry disk, observable with the naked eye and through optical telescopes, spans 120,000 light-years. Encircling it is another disk, composed mostly of hydrogen gas, detectable by radio telescopes. And engulfing all that our telescopes can see is an enormous halo of dark matter that they can’t. While it emits no light, this dark matter far outweighs the Milky Way’s hundreds of billions of stars, giving the galaxy a total mass one to two trillion times that of the sun. Indeed, our galaxy is so huge that dozens of lesser galaxies scamper about it, like moons orbiting a giant planet.

Read the rest of “Star Struck” by Ken Croswell in the December edition of National Geographic.

In addition to the article, National Geographic has a beautiful extended Milky Way gallery that’s well worth a look.

Astroengine Gets Quoted in National Geographic

The December 2010 edition of National Geographic

The December 2010 edition of National Geographic

A couple of months ago I was contacted by National Geographic magazine notifying me that one of their writers had quoted me in an article for their December issue. Pretty cool, I thought. But then I forgot all about it.

Then, I received a note from the ever watchful Bill Hudson (@2012hoax) telling me Astroengine had been printed on page 99. I quickly scurried over to the National Geographic website to find, sure enough, I was there too: on page 3 of the online article “Star Struck.”

The following morning, I received a complementary copy of the December edition so I could see Astroengine in print for the first time.

National Geographic’s special feature takes a fascinating tour of the Milky Way and when discussing metal-poor stars in the outermost reaches of our galaxy, the article quotes the title of the Astroengine post “Life is Grim on the Galactic Rim.” Obviously they like my rhyming skills.

Thank you National Geographic!

I’ve been told I can write a blog with an excerpt from the superb article written by Ken Croswell, so that’ll be coming right up!

I think I need to blog more…

Dead On Arrival: Necropanspermia Spawned Life on Earth?

Are those Martian fossils in meteorite ALH84001? (NASA)

Are those Martian fossils in meteorite ALH84001? (NASA)

Panspermia” is a hypothesis that life is transferred from planet-to-planet and star system-to-star system through some interplanetary or interstellar means.

But for panspermia to work, this life needs to be sufficiently protected — and, um, kept alive — from the worst the universe can throw at it (such as radiation, cold and vacuum). Alas, when considering interstellar hops, the timescales are likely too long (i.e. millions of years) and said life will be dead on arrival.

We know that Earth Brand™ life is a pretty hardy thing. After all, we’ve tortured terrestrial microbes and mosquito larvae in the vacuum of space to see if they’d pop. Sure enough, when brought back to terra firma the various creatures wriggled and squirmed as if nothing had happened. But these experiments in orbit were carried out over the course of months or years. While this might be suitable for interplanetary transfers, it would take millions of years for an extraterrestrial interloper to traverse even a modest interstellar gap.

Any hitchhikers that were alive on a stellar wind-blown particle will be toast (or, more accurately: freeze-dried, pulverized, mashed-up, DNA-shredded mess) on reaching their exotic destination eons later.

What good are tiny alien fossils when the panspermia model is supposed to seed other worlds with life… that’s actually alive?

Enter a new incarnation of pansermia: “Necropanspermia.”

Conceived by Paul Wesson, of Herzberg Institute of Astrophysics in Canada, necropanspermia is the transfer of the information of life to new worlds, wriggling extraterrestrial bacterium not required.

Assuming alien microbial life has made the trip across interstellar space, died and then fossilized, Wesson reckons the information contained within the long-dead microbe could be used as some kind of template by a hospitable world to use and grow new life. (It’s not quite zombie science, but it’s hard not to say “reanimated alien corpse.”)

Wesson even goes so far to suggest ET’s microbial remains can be “resurrected.”

“Resurrection may, however, be possible.” Wesson concludes in his Space Science Reviews paper. “Certain micro-organisms possess remarkably effective enzyme systems that can repair a multitude of strand breaks.”

Hypothesizing about various forms of panspermia may seem more like a philosophical argument, but Wesson suggests that we might be able to find evidence for necropanspermia if we collect some dust samples from the outermost reaches of the solar system, far enough away from Earth’s biological pollution.

Alas, as the Hayabusa asteroid mission has proven, capturing dust from anywhere in space isn’t easy.

Read more about necropanspermia in my Discovery News article “Life on Earth Spawned by Dead Alien Microbes?

Holographic Universe: Fermilab to Probe Smallest Space-Time Scales

Conceptual design of the Fermilab holometer (Fermilab)

Conceptual design of the Fermilab holometer (Fermilab)

During the hunt for the predicted ripples in space-time — known as gravitational waves — physicists stumbled across a rather puzzling phenomenon. Last year, I reported about the findings of scientists using the GEO600 experiment in Germany. Although the hi-tech piece of kit hadn’t turned up evidence for the gravitational waves it was seeking, it did turn up a lot of noise.

Before we can understand what this “noise” is, we need to understand how equipment designed to look for the space-time ripples caused by collisions between black holes and supernova explosions.

Gravitational wave detectors are incredibly sensitive to the tiniest change in distance. For example, the GEO600 experiment can detect a fluctuation of an atomic radius over a distance from the Earth to the Sun. This is achieved by firing a laser down a 600 meter long tube where it is split, reflected and directed into an interferometer. The interferometer can detect the tiny phase shifts in the two beams of light predicted to occur should a gravitational wave pass through our local volume of space. This wave is theorized to slightly change the distance between physical objects. Should GEO600 detect a phase change, it could be indicative of a slight change in distance, thus the passage of a gravitational wave.

While looking out for a gravitational wave signal, scientists at GEO600 noticed something bizarre. There was inexplicable static in the results they were gathering. After canceling out all artificial sources of the noise, they called in the help of Fermilab’s Craig Hogan to see if his expertise of the quantum world help shed light on this anomalous noise. His response was as baffling as it was mind-blowing. “It looks like GEO600 is being buffeted by the microscopic quantum convulsions of space-time,” Hogan said.

Come again?

The signal being detected by GEO600 isn’t a noise source that’s been overlooked, Hogan believes GEO600 is seeing quantum fluctuations in the fabric of space-time itself. This is where things start to get a little freaky.

According to Einstein’s view on the universe, space-time should be smooth and continuous. However, this view may need to be modified as space-time may be composed of quantum “points” if Hogan’s theory is correct. At its finest scale, we should be able to probe down the “Planck length” which measures 10-35 meters. But the GEO600 experiment detected noise at scales of less than 10-15 meters.

As it turns out, Hogan thinks that noise at these scales are caused by a holographic projection from the horizon of our universe. A good analogy is to think about how an image becomes more and more blurry or pixelated the more you zoom in on it. The projection starts off at Planck scale lengths at the Universe’s event horizon, but its projection becomes blurry in our local space-time. This hypothesis comes out of black hole research where the information that falls into a black hole is “encoded” in the black hole’s event horizon. For the holographic universe to hold true, information must be encoded in the outermost reaches of the Universe and it is projected into our 3 dimensional world.

But how can this hypothesis be tested? We need to boost the resolution of a gravitational wave detector-type of kit. Enter the “Holometer.”

Currently under construction in Fermilab, the Holometer (meaning holographic interferometer) will delve deep into this quantum realm at smaller scales than the GEO600 experiment. If Hogan’s idea is correct, the Holometer should detect this quantum noise in the fabric of space-time, throwing our whole perception of the Universe into a spin.

For more on this intriguing experiment, read the Symmety Magazine article “Hogan’s holometer: Testing the hypothesis of a holographic universe.”

Ingredients for Life on Gliese 581g?

Credit: Lynette Cook

Just in case you haven’t heard, astronomers have released news about an “Earth-like” exoplanet orbiting within the “Goldilocks zone” of a star some 20 light-years away. This is awesome, but does it mean Gliese 581g is habitable? Does it mean life is already slithering across its surface?

Judging by an exuberant claim by Steven Vogt, professor of astronomy and astrophysics at University of California Santa Cruz, one would think we now know there’s life on this strangely familiar world.

“Personally, given the ubiquity and propensity of life to flourish wherever it can, I would say that the chances for life on this planet are 100 percent. I have almost no doubt about it,” Vogt told Discovery News when the announcement broke on Wednesday.

100%?

Why did he say that his personal view was that the chances for life on Gliese 581g are 100%? At first glance, it is easy to see where he’s coming from.

Goldilocks Zone

Firstly, the exoplanet orbits close to a small red dwarf star (called Gliese 581), with a fast-paced orbit of 37 days. This is important as the energy output of a red dwarf is tiny when compared to our Sun (which is a yellow dwarf star, in case you were wondering) — to receive an equivalent amount of heating as the Earth, Gliese 581g needs to be much closer to its star.

Also, it isn’t orbiting too close. It is within the habitable zone (or the “Goldilocks zone,” i.e., a zone that’s not too hot or too cold) of the system. Therefore there’s a high probability that if water is present on its surface, it’s likely to be in liquid form. The presence of liquid water would be exciting as Earth Brand™ life likes liquid water.

Secondly, Gliese 581g is small for an exoplanet discovered thus far. Weighing in at a minimum mass of 3x that of the Earth, it could certainly have some Earth-like qualities. This has another implication; the world has enough gravitational oomph to hold onto an atmosphere — another ingredient that life seems to like (assuming it’s not of the bone-crushing, lead-boiling, Venus-type atmosphere).

It’s Complicated

But there’s a few complications. To be within the habitable zone of its parent star, Gliese 581g will be “tidally locked.” This means that one side of the exoplanet will always be facing the star. On the far side (or, indeed, the “dark side”) it will be cold whilst the near side will always be hot. Having one perpetual day doesn’t sound very Earth-like to me. But there is an upside to this strange orbit.

“This planet doesn’t have days and nights. Wherever you are on this planet, the sun is in the same position all the time. You have very stable zones where the ecosystem stays the same temperature… basically forever,” Vogt said. “If life can evolve, it’s going to have billions and billions of years to adapt to the surface.”

So a tidally-locked planet could have a stable atmosphere and perhaps life could evolve as a result. What could be considered to be a negative has just become a positive.

With all this good news, why wouldn’t life be thriving on this world?

Unknowns and Assumptions

There’s still a lot of unknowns and assumptions being made. For a start, the presence of Gliese 581g was detected by measuring the “wobble” of the star as the exoplanet orbits (its gravity tugs on the star as it circles). Therefore its mass and orbital radius can be derived. But we have no information about its atmosphere; the world doesn’t pass in front (or “transit”) the star from our perspective, so we can’t get a peek into its atmosphere.

Therefore we have zero clue as to whether it even has an atmosphere. It might not have an atmosphere, but then again it could have a very thick atmosphere — two extremes that would would put a stop to any Earth Brand™ life evolving. Also, we have zero clue if there’s any water there, it’s just guesswork that suggests there might be. There’s also the huge unknown as to whether life is ubiquitous in the cosmos or not.

Bread in the Oven

It’s a bit like baking a loaf of bread when you have all the necessary ingredients to make bread, but you have no clue about what quantities to use. Gliese 581g appears to have most of the ingredients for life (and with a few assumptions, it has all the ingredients for life), but we only have a general idea as to what quantities these ingredients come in.

If you threw flour, water and yeast straight into the breadmaker in random quantities, would you get a loaf of bread? What if you forgot to add the yeast?

Gliese 581g is that breadmaker. Unfortunately we have no clue if it can make bread.

For more on this incredible discovery, read Irene Klotz’s Discovery News article: “Earth-Like Planet Can Sustain Life