Epic SpaceX Dragon Mission “Highlights” Video

In May, SpaceX made history — the company launched an unmanned spacecraft, the Dragon, to the International Space Station. The Dragon performed flawlessly, berthing with the orbiting outpost, completing the delivery “test run” on May 31 when the spacecraft splashed down off the Californian coastline.

And now, remembering the highlights of this historic mission, SpaceX has put together a very cool video featuring the Dragon’s launch and space station berthing.

As I briefly discussed in today’s Discovery News article, seeing the emotional scenes of SpaceX employees cheer during the Falcon 9 launch (and then confirmation that the Dragon’s solar panels had unfurled) held the most magic for me.

Space exploration is a very human experience. It goes far beyond rockets, spaceships and awesome technological breakthroughs; exploring new frontiers is a drive that is inside us all. SpaceX CEO Elon Musk understands this and communicates his company’s drive to make mankind “multi-planetary” excellently.

Keep dreaming bold things.

About these ads

Soyuz Floating On Clouds

The Soyuz TMA-03M spacecraft parachute contrasts with the cloud over Kazakhstan minutes before touchdown. Credit: Bill Ingalls/NASA

The Soyuz TMA-03M spacecraft parachute contrasts with the cloud over Kazakhstan minutes before touchdown. Credit: Bill Ingalls/NASA

In the early hours of Sunday morning (Pacific Time), a Russian cosmonaut, NASA astronaut and a European Space Agency astronaut returned to Earth after a 6-month stay on the International Space Station (ISS). Oleg Kononenko, Don Pettit and Andre Kuipers landed safely on the Kazakhstan steppes after the Soyuz TMA-03M spacecraft fired its soft landing rockets, blasting a cloud of dust into the air. But before touchdown and after the violence of reentry, NASA photographer Bill Ingalls was able to photograph this beautiful aerial view of the Soyuz and deployed parachute above the clouds. What a ride that must have been.

Read more about the successful Soyuz landing on Discovery News.

Special thanks to NASA astronaut Nicole Stott (@Astro_Nicole) for tweeting this photo!

Epic Mars Rover Curiosity Video of the “7 Minutes of Terror”

This video has been doing the rounds, so I posted it on Discovery News on Tuesday. My favorite comment from a reader was: “I need a clean pair of shorts.” That means only one thing; it’s time for some epic NASA-created CGI of the entry, descent and landing (a.k.a. “EDL”) of the Mars Science Laboratory “Curiosity” set for landing on the Red Planet on August 5 at 9:30 p.m. (PST). To be honest, the video speaks for itself, so I’ll hand over to EDL Engineer Adam Stelzner (who really needs his own TV show — love his monolog).

SpaceX’s Dragon: The Dawn of a New Age for Space Exploration?

SpaceX's Falcon 9 carries the Dragon capsule to orbit (NASA TV)

SpaceX's Falcon 9 carries the Dragon capsule to orbit (NASA TV)

This morning, at 12:44 a.m. PDT, a rocket was launched from Cape Canaveral Air Force Station Space Launch Complex 40. It wasn’t the biggest of rockets; it wasn’t carrying a particularly exciting payload, either. But it may well represent a crossroads in spaceflight history.

Space Exploration Technologies, or SpaceX, saw a perfect launch of its Falcon 9 rocket. Sporting nine Merlin engines — engines designed and built in-house — the rocket blasted off exactly as planned even though the first launch attempt on Saturday was scrubbed. The “failed” attempt — that was aborted automatically in the last second due to a faulty valve in number 5 engine — was actually a success unto itself; a means of ensuring the launch abort systems were working as they should.

But Saturday is a distant memory as, at right at this moment, there’s an unmanned spacecraft chasing after the International Space Station set for a historic orbital rendezvous in three days time. The Falcon 9 operated as it should and so has the Dragon capsule. So far.

Assuming everything else goes to plan, what does this mission mean for the future of spaceflight?

This is no silver bullet to solve all our spaceflight woes, but it could be the start of something a little bit special. Elon Musk, Internet entrepraneur and SpaceX CEO, has no qualms about thinking big. His enthusiasm for space exploration is infectious and his eye for applying a business model to rocket science is, so far, genius. In a world driven by politics and money, he’s found a way of tying the two together to give the noble effort of pushing mankind’s frontiers an accelerated start. He’s eying Mars. If SpaceX can build rockets and spaceships, perhaps companies, governments and institutions will buy his company’s services to travel through interplanetary space.

Does this mean Mars “taxi rides” are in our future? Perhaps.

But spaceflight history is littered with failed start-ups, accidents and expense, so time will only tell how far SpaceX and other private spaceflight companies can push mankind’s exploration envelope.

I can’t help but be enthusiastic for Musk’s endeavour, however. Remember Sept. 28, 2008, when SpaceX became the first company to launch its own rocket into orbit? That was only four short years ago.

It may be too early to get excited over seeing the Dragon docked to the ISS, but the importance of such an event shouldn’t be ignored. Once SpaceX proves it can be done, this could be a paradigm shift. Space exploration could be driven by enterprise and exploration, potentially transforming us into a multi-planetary species.

Listen to the “Which Way, LA” show hosted by Warren Olney where we discuss SpaceX and commercial space.

Could Kepler Detect Borg Cubes? Why Not.

That's no sunspot.

"That's no sunspot."

Assuming Star Trek‘s Borg Collective went into overdrive and decided to build a huge cube a few thousand miles wide, then yes, the exoplanet-hunting Kepler space telescope should be able to spot it. But how could Kepler distinguish a cube from a nice spherical exoplanet?

With the help of Ray Villard over at Discovery News, he did some digging and found a paper dating back to 2005 — long before Kepler was launched. However, researcher Luc Arnold, of the Observatoire de Haute-Provence in Paris, did have the space telescope in mind when he studied what it would take to distinguish different hypothetical shapes as they passed in front of his theoretical stars.

The big assumption when looking for exoplanets that drift between distant stars and the Earth — events known as “transits” — is that the only shape these detectable exoplanets come in are spheres. Obvious really.

As a world passes in front of its parent star, a circular shadow will form. However, from Earth, we’d detect a slight dimming of the star’s “light curve” during the transit, allowing astronomers to deduce the exoplanet’s orbital period and size.

The transit method has been used to confirm the presence of hundreds of exoplanets so far, and Kepler has found over 1,200 additional exoplanet candidates. But say if astronomers paid closer attention to the shape of the received light curve; spherical objects have a distinct signature, but say if something looked different in the transiting “planet’s” light curve? Well, it could mean that something non-spherical has passed in front of a star. And what does that mean? Well, that would be a pretty convincing argument for the presence of a huge planet-sized artificial structure orbiting another star. Artifical structure = super-advanced alien civilization.

Arnold tested his theory that all manner of shapes could be detected by Kepler, assuming the transiting structure was on the scale of a few thousand miles wide. In this case, Arnold was testing his hypothesis to see whether we could detect an advanced civilization’s “shadow play.” Perhaps, rather than beaming messages by radio waves, an advanced civilization might want to signal their presence — SETI style — by blocking their sun’s light with vast sheets of lightweight material. As the shape passes in front of the star, the slight dimming of starlight would reveal an artificial presence in orbit.

By putting a series of these shapes into orbit, the aliens could create a kind of interstellar Morse code.

Of course, this is a rather “out there” idea, but I find it fascinating that Kepler could detect an alien artifact orbiting a star tens or hundreds of light-years away. Although this research is only considering orbital “billboards,” I quite like the idea that Kepler might also be able to detect a large structure like… I don’t know… a big Borg mothership. Having advanced warning of the presence of an aggressive alien race sitting on our cosmic doorstep — especially ones of the variety that like to assimilate — would be pretty handy.

Publication: Transit Lightcurve Signatures of Artificial Objects, L. Arnold, 2005. arXiv:astro-ph/0503580v1

The Ultimate Paternity Test: Are We Martian?

"Dad?" A scene from War of the Worlds.

This rather outlandish, sci-fi notion comes straight from the fertile minds of researchers from MIT, the Massachusetts General Hospital and Harvard University who are proposing a biology experiment that could be sent on a future Mars surface mission. If their hypothesis is proven, we wouldn’t only have an answer for the age old question: Are we alone? but we’d also have an answer for the not-so-age-old question: Did life from Mars spawn life on Earth?

The idea goes like this: countless tons of material from Mars has landed on Earth. We know this to be true; meteorites have been discovered on Earth that originate from the Red Planet. These rocks were blasted from the Martian surface after eons of asteroid impacts, and the rocks then drifted to Earth.

If there was once life on Mars — a concept that isn’t that far-fetched, considering Mars used to boast liquid water in abundance on its surface — then perhaps some tiny organisms (not dislike the hardy cyanobacteria that is thought to have been one of the earliest forms of life to evolve on our planet) hitched a ride on these rocks. If some of these organisms survived the harsh conditions during transit from Mars to Earth and made it though the searing heat as the meteorite fell through our atmosphere, then perhaps (perhaps!) that is what sparked life on Earth.

You may have heard a few variations of this mechanism, it is of course the “panspermia” hypothesis. Panspermia assumes that life isn’t exclusive to just one rocky body like Earth, perhaps life has the ability to hop from one planet to the next, helped on its way by asteroid impacts. Not only that, but perhaps (perhaps!) tiny microorganisms could drift, encased in interstellar dust, akin to pollen drifting in the wind, seeding distant star systems.

Naturally, when considering the distance between the planets (let alone the light-years between the stars!), one might be a little skeptical of panspermia. But it certainly would help us understand how life first appeared on Earth. After all, it’s not as if the solar system has a natural quarantine system in place — if Mars had (or has) bacteria on its surface, perhaps they have been spread to Earth, like an interplanetary flu bug. Also, as experiments are showing us, microorganisms have an uncanny ability to survive in space for extended periods of time.

So, according to my esteemed Discovery News colleague Ray Villard, the MIT team led by Christopher Carr and Maria Zuber and Gary Ruvkun, a molecular biologist at the Massachusetts General Hospital and Harvard University, are proposing to build an instrument to send to Mars. But this instrument won’t be looking for signs of life, it will be testing the hypothetical Martian DNA and RNA. Should this interplanetary paternity test prove positive, proving a relationship between Earth Brand™ Life and Mars Brand™ Life, then this could be proof of some extraterrestrial cross-pollination.

Although this is complete conjecture at this time, as there is no proof that life has ever existed on Mars (despite what research in dodgy research journals tell us), it is certainly an interesting idea that would not only test the hypothesis of panspermia, but also give us a clue about the potential human colonization of Mars.

To quote Ray:

This could give us pause about sending humans to a germ-laden alien world. It would be an ironic twist on the H.G. Wells classic 1898 novel “The War of the Worlds,” where invading Martians succumb to the common cold from Earth microbes.

See, Wells’ Martian warriors should have done genome testing first.

Astroengine Gets Quoted in National Geographic

The December 2010 edition of National Geographic

The December 2010 edition of National Geographic

A couple of months ago I was contacted by National Geographic magazine notifying me that one of their writers had quoted me in an article for their December issue. Pretty cool, I thought. But then I forgot all about it.

Then, I received a note from the ever watchful Bill Hudson (@2012hoax) telling me Astroengine had been printed on page 99. I quickly scurried over to the National Geographic website to find, sure enough, I was there too: on page 3 of the online article “Star Struck.”

The following morning, I received a complementary copy of the December edition so I could see Astroengine in print for the first time.

National Geographic’s special feature takes a fascinating tour of the Milky Way and when discussing metal-poor stars in the outermost reaches of our galaxy, the article quotes the title of the Astroengine post “Life is Grim on the Galactic Rim.” Obviously they like my rhyming skills.

Thank you National Geographic!

I’ve been told I can write a blog with an excerpt from the superb article written by Ken Croswell, so that’ll be coming right up!

I think I need to blog more…