Introducing Little SDO

The Solar Dynamics Observatory (NASA)

Playing on our love for WALL-E, our amazement for the Pixar Lamp and some great animation, Chris Smith, an employee at NASA Goddard Flight Center, has given the upcoming Solar Dynamics Observatory a personality.

Apart from obviously having too much time on his hands, Smith is a very talented guy (as all NASA employees are) and is showing that, once again, the space agency is doing a fantastic job of reaching out to the public.

As proven by the efforts of the Phoenix Mars Lander team in 2008, communication goes a long way and by harnessing social media, NASA can make its missions household names. Phoenix was tweeting, blogging and podcasting to its hearts content for five months, from touchdown to frozen death; it was Big Brother for robots living on Mars.

Now most NASA missions have Twitter feeds and devoted blogs, ensuring everyone’s interest is piqued. It also helps to have a Twitter feed talking in first-person, giving these brave rovers, landers, orbiters and probes a much needed personality.

So now, Chris Smith has done something very cool with the SDO; he’s given it an animated personality in a short animation reminiscent of a movie teaser for an upcoming Disney-Pixar feature film. Behold, the Little SDO:

It’s a really fun little piece,” says Wade Sisler, a television producer for NASA. “And we’re hoping to use it as a way of waking some kids and folks up to solar science.”

And so NASA should, I like it! It’s going to get people interested in a comparatively small mission, and let’s face it, the satellite lacks character (the boxy 4-eyed robot doesn’t do much for me). However, now that Smith has added squeaky solar panel wings, and blinking “eyes” (without changing the design of the craft at all), he’s boosted the SDO’s likeability. Suddenly I care for the little guy. I hope he doesn’t get hit by a solar flare.

Due for launch in October, the SDO will be inserted into a geosynchronous orbit above New Mexico, gathering data from the Sun, so solar physicists can better understand space weather. The cool thing is that with those four eyes, the SDO will capture high-definition images of the Sun continuously.

It might not have the dazzle of the Phoenix Mars Lander, but it has a personality and people will love him (I await the Twitter feed).

Learn more about the Solar Dynamics Observatory »

Source: Wired Science

About these ads

Brown Dwarfs: “Over-Achieving Jupiters” not “Failed Stars”

browndwarf3

Why is the term “failed star” synonymous with brown dwarfs? On the one hand, brown dwarfs lack the mass to sustain nuclear fusion in their cores. On the other hand, who said brown dwarfs were trying to be stars? Who ever said that becoming a star was the pinnacle of stellar living? Perhaps brown dwarfs are perfectly happy the way they are. In a world of equality and political correctness, brown dwarfs could be viewed as “over-achieving Jupiters”, or gas supergiants
Continue reading

An Explanation For Solar Sigmoids

A coronal sigmoid as imaged by the XRT instrument on Hinode (JAXA)

Sigmoids in the solar corona have been studied for many years, but little explanation of their formation or why they are often the seed of powerful solar flares have been forthcoming. Using high-resolution X-ray images from the Japanese-led solar mission Hinode (originally Solar-B), solar physicists have known that these very hot S-shaped structures are composed of many highly stressed magnetic flux tubes filled with energized plasma (also known as ‘fibrils’), but until now, little was known about the formation and flare eruption processes that occur in sigmoids.

Now, a team of solar physicists from the University of St Andrews believe they have found an answer using powerful magnetohydrodynamic (MHD) computer models, aiding our understanding of coronal dynamics and getting us one step closer to forecasting space weather…
Continue reading

Are Brown Dwarfs More Common Than We Thought?

A brown dwarf plus aurorae (NRAO)

In 2007, a very rare event was observed from Earth by several observers. An object passed in front of a star located near the centre of the Milky Way, magnifying its light. Gravitational lensing is not uncommon in itself (the phenomenon was predicted by Einstein in 1915), but if we consider what facilitated this rare “microlensing” event, things become rather interesting.
Continue reading

C.A.T. Scans of the Solar Wind

Guest article by Dr. Mario M. Bisi (Research Focus)

A cut in the ecliptic plane through a 3D reconstruction on 08 November 2004 at 0000 UT using white-light data from SMEI. The view is from directly North of the ecliptic; the Sun is at the centre marked by a +, the Earth is on the right marked with a ⊕ along with its orbit as a black near-circular line around the Sun (the Earth orbits anti-clockwise around the Sun from this point of view). The darker the colour, the greater the density of material in the ecliptic.  (©Dr. Mario M. Bisi)

A cut in the ecliptic plane through a 3D reconstruction on 08 November 2004 at 0000 UT using white-light data from SMEI. The view is from directly North of the ecliptic; the Sun is at the centre marked by a +, the Earth is on the right marked with a ⊕ along with its orbit as a black near-circular line around the Sun (the Earth orbits anti-clockwise around the Sun from this point of view). The darker the colour, the greater the density of material in the ecliptic. (©Dr. Mario M. Bisi)

The Computer Assisted Tomography (C.A.T.) technique has been used for many years now and is well known for use on people where certain health conditions need more thorough, detailed, and deeper scans into the human body and the need for three-dimensional (3D) reconstructed imaging. However, similar such scans can also be used on the solar wind to discover the shapes and sizes of structures near Earth and throughout the inner heliosphere in three dimensions. These scans have been carried out for some time, pioneered in the most part by those at the Center for Astrophysics and Space Sciences (CASS), University of California, San Diego (UCSD) in La Jolla, CA, U.S.A. in close-collaboration with the Solar-Terrestrial Environment Laboratory (STELab), Nagoya University, Toyokawa, Japan…
Continue reading

WR 104: Not The Killer It Used To Be

WR 104. A killer? Not so much.

WR 104. A killer? Not so much.

It’s interesting how astronomical harbingers of doom have the ability to pop up more than once on the ‘net. However, the doom isn’t quite as terrifying when you’ve sat through a conference presentation by a scientist who has exhaustively given every reason as to why this particular killer won’t hurt you.

Enter WR 104.

To be honest, if it wasn’t a Wolf-Rayet star, I probably wouldn’t be writing about it (as we all know, or you should know, Wolf-Rayets are my favourite stellar objects), but this little fact combined with the fact that I know the Earth is no longer on the WR 104 hit-list, I feel compelled to correct an article that has just popped up on the web referencing out-of-date source material.

So, let’s wind this back the clock to January 2009 when I sat in on a very reassuring this-star-isn’t-actually-going-to-kill-us-after-all astro presentation…
Continue reading

Star Formation: The Game

starformation

Dave Mosher, I’m pointing my finger at you for this late night effort! Usually I stay up late to write articles, but for the last 30 minutes I’ve been playing this game after Dave sent a message on Twitter saying he had been playing a “simple” and “addictive” star formation game. No kidding! I shouldn’t have even clicked the link. But like a caffeine-infused moth to a super-shiny flame, off I went for some simple star-creation fun.

It looks like the Star Formation game is part of Discover Magazine’s featured article about the mysteries of star birth (it’s a great read, check it out). The game is simple, yet captivating (despite a few minor bugs). You play the role of supernova progenitor, dropping some massive star fury on an unsuspecting nebulous cloud of hydrogen. According to the game developers, the situation is physically accurate, it is just up to you to create the perfect conditions for stars to form in the dense cloud. It would appear the lectures I attended on star formation paid off, as I speak I’m on top of the leaderboard with a whopping 21122 points (see the screengrab above, I saved it posterity, I doubt I’ll be at #1 for much longer).

I’m all for games with an educational element, and I can’t think of a better way to spend an evening (well, I can, but if you’re stuck in the office, this is a great alternative to work). I’m off to create some more stars, check out Discover so you can do the same (just you try to knock me from the #1 slot!).

What Will Happen When the Sun Turns into a White Dwarf?

Strong tidal interactions are thought to shred any asteroids or comets as they get too close to a white dwarf (NASA)

All the way back in January, I had the great fortune to attend the American Astronomical Society’s (AAS) conference in Long Beach, California. I had a lot of fun. However, between the free beer and desperately searching for wireless Internet signal, I also did some work. During my travels, I spent some time browsing the poster sessions, trying to get inspiration for an article or two. You’d think that when presented with hundreds of stunning posters that inspiration wouldn’t be that far away. However, I was repeatedly frustrated by information overload and defaulted to a clueless meander up and down the pathways walled with intense science debates.

But then I saw it, right at the end of one of the poster walls, a question that got my imagination bubbling: “Will The Sun become a Metal Rich White Dwarf After Post Main Sequence Evolution?” The Sun? After the Main Sequence? Metal rich? To be honest, these were questions I’d never really pondered. What would happen when the Sun turns into a white dwarf? Fortunately, I had Dr John Debes to help me out with the answers…
Continue reading

When the Sun is So Boring, Anything Becomes Interesting

Caption: So boring it doesn't deserve a caption (NASA/SOHO)

Caption: So boring it doesn't deserve a caption (NASA/SOHO)

You know when you have those unremarkable days, those periods of time you experience you know you’ll forget tomorrow? It’s either “just another” day at work, another commute, or a Sunday where you had a beer, fell asleep, only to wake up again to realise it was too late to get up so you stayed in bed till Monday? (And no, I don’t make a habit of that. I’m sure to have at least two beers.) Most days aren’t like that for me, usually I can think of one noteworthy event that sets apart one day from the next, but sometimes it’s as if Stuff Happens™ doesn’t.

It would appear the Sun is having an extended period of time where Stuff Happens™ is at a premium, so you have to make the most of when something really does happen. In this case, the Sun released a crafty CME, thinking we wouldn’t see it…
Continue reading

Reality, Virtual

Left: The 5-sense virtual reality system. Right: A scene from the NASA MMORPG (Mark Richards/NASA)

Left: The 5-sense virtual reality system. Right: A scene from the NASA MMORPG (Mark Richards/NASA)

Computer technology is reaching new levels of sophistication, limited only by our imagination (and that pesky Moore’s Law). As we develop faster and more powerful processors, an exponential increase in the number of calculations can be done per second, providing advanced software with the capability to deliver complex applications to the user. In fact, some computer operations are becoming hard to distinguish from basic human interactions (neural networks hold particular promise).

Naturally, this continuing advance in technology has stimulated the Internet, allowing users worldwide to interact at great speed, where virtual worlds have been created, and people can project themselves as an avatar (a virtual ambassador for their real-world personalities). These virtual worlds have become so immense that millions of users can interact, and the boundary of the universe is only limited by how many networked computers you have running the show. These virtual universes are known as Massively Multiplayer Online Role Playing Game (MMORPG), and NASA hopes to release their universe (Astronaut: Moon, Mars and Beyond) some time next year.

User interfaces are advancing too. Gone are the days of simple gaming feedback features (such as a rumbling joypad when your 3D animated cartoon character suffers a blow on your 2D TV screen), virtual reality is starting to live up to its name, where the virtual world is overlapping with our real world. Now a 5-sense virtual reality system is undergoing tests, and its implications for NASA’s MMORPG and future space exploration could be huge…

When does virtual reality become… reality?
Continue reading