Mars Shot First: Curiosity’s Wind Sensor Damaged

Hi-res self-portrait of Curiosity -- taken with the mast-mounted Navcams. Credit: NASA/JPL-Caltech

Hi-res self-portrait of Curiosity — taken with the mast-mounted Navcams. Debris can be seen scattered across the deck. Credit: NASA/JPL-Caltech

During Mars rover Curiosity’s dramatic landing on Aug. 5, the rocket-powered sky crane blasted debris onto the rover’s deck. The first question that came to mind concerned the safety of exposed and potentially vulnerable instrumentation. I was in the very fortunate position to raise my concerns during the Aug. 9 NASA news briefing. The response from MSL mission manager Mike Watkins was cautious optimism that little to no damage was caused by the unexpected ejection of material from the ground.

Alas, it would seem that some damage was sustained.

“It does appear that some small rocks became lofted in the winds that were generated by the plumes during landing and probably just fell upon the rover deck,” said Curiosity deputy project scientist Ashwin Vasavada, with NASA’s Jet Propulsion Laboratory in Pasadena, Calif., during a conference call on Tuesday (Aug. 21).

“Some of these rocks may have fallen on these exposed circuit boards and damaged the wires. That’s just one potential cause. We don’t know for sure and we don’t really have a way of assessing that at this point any further,” he added.

It appears that one of the booms on the Mars Science Laboratory’s Rover Environmental Monitoring Station (REMS) — located on the rover’s mast — may have been the hardware that got sandblasted or smashed by Mars rocks. REMS now only has one (of two) booms operational. The booms’ purpose is to take measurements of wind speed on the Martian surface. Although this is a setback (and, so far, the ONLY setback), mission scientists are confident they’ll find a workaround.

“We’ll have to work a little harder to understand when the wind may be coming from a direction that would be masked by (Curiosity’s) mast … but we think we can work around that,” Vasavada said.

So, it would appear that Mars shot firstbut Curiosity shot back. (Thanks @absolutspacegrl and @ArchLundy!)

Just in case you have no idea what we’re referring to:

About these ads

Shock and Awe: Curiosity Laser-Blasts First Mars Rock

The laser-zapped rock "Coronation" -- inset image was taken by the ChemCam instrument, featuring the small laser burn. Credit: NASA/JPL-Caltech

The laser-zapped rock “Coronation” — inset image was taken by the ChemCam instrument, featuring the small laser burn. Credit: NASA/JPL-Caltech

After Mars rover Curiosity’s thunderous landing on Aug. 5/6, any hypothetical Martian on the surface would have been forgiven for being a little confused.

Setting down on the flat plain called Aeolis Palus inside Gale Crater, the six-wheeled, one-ton, nuclear-powered rover would have looked more like an alien battle tank being dropped off by a rather ominous-looking “Flying Saucer” than a scientific mission. But after the famous “sky crane” maneuver that lowered the rover with the precision of a Harrier Jump Jet, the “alien” robot didn’t start rolling over the Martian landscape zapping Mars rocks with its laser. Instead, it just sat there. For days. Occasionally there’d be a bit of action — such as Curiosity’s cameras swiveling, mast raising and high-gain antenna tracking the sky — but apart from that, our hypothetical Martians would probably not have thought much of this lack-luster invasion by an airdropped tank.

But that all changed today. Curiosity blasted a rock with its laser, marking the beginning of Curiosity’s Mars domination! Shock and awe, Mars rover style.

Alas, this isn’t a military exercise, but it is significant. Today marks the first day that one of our interplanetary robotic emissaries have used a laser on another planet in the name of science. NASA mission operators gave the go-ahead to carry out a test-run of the Chemistry and Camera instrument, or ChemCam, targeting a small rock (called “Coronation”) with 30 pulses of its laser over a 10-second period. According to the JPL press release, each pulse delivered more than a million watts of power for about five one-billionths of a second.

The fist-sized Mars rock -- called "Coronation", previously designated "N165" -- has become the first casualty scientific target of Curiosity's ChemCam intrument. Credit: NASA/JPL-Caltech

The fist-sized Mars rock — called “Coronation”, previously designated “N165″ — has become the first casualty of war scientific target of Curiosity’s ChemCam instrument. Credit: NASA/JPL-Caltech

“We got a great spectrum of Coronation — lots of signal,” said ChemCam Principal Investigator Roger Wiens of Los Alamos National Laboratory, N.M. “Our team is both thrilled and working hard, looking at the results. After eight years building the instrument, it’s payoff time!”

The laser works by vaporizing the surface layers of exposed rock. Under the intense heating by such focused energy, a tiny sample of material rapidly turns into plasma. The the flash of light generated by the small, rapidly dissipating cloud of plasma can then by analyzed from afar by the ChemCam’s spectrometer. The light reveals what kinds of elements are contained in the sample, aiding Curiosity’s studies of the Red Planet. And the best thing is that ChemCam appears to be working better than expected.

“It’s surprising that the data are even better than we ever had during tests on Earth, in signal-to-noise ratio,” said ChemCam Deputy Project Scientist Sylvestre Maurice of the Institut de Recherche en Astrophysique et Planetologie (IRAP) in Toulouse, France. “It’s so rich, we can expect great science from investigating what might be thousands of targets with ChemCam in the next two years.”

To find out more about this landmark day for Curiosity and Mars exploration, read the JPL press release: “Rover’s Laser Instrument Zaps First Martian Rock

Sol 2: Rocky Debris on Curiosity’s Deck Hints of Thunderous Landing (Update)

The view through Curiosity's left (A) and right (A) Navcams, looking down on the deck of the rover. Credit: NASA/JPL-Caltech

The view through Curiosity’s left (A) and right (A) Navcams, looking down on the deck of the rover. Credit: NASA/JPL-Caltech (levels adjusted)

UPDATE (Aug. 9, 2012): During Thursday’s NASA press briefing, I asked MSL mission manager Mike Watkins about the likely impact the debris atop the rover may have on the mission. Although the debris was unexpected, it’s not thought to affect any of the rover’s instrumentation. Read more on Discovery News: “Unexpected Debris atop Curiosity Not a Problem.

On Sol 2 of NASA’s Mars Science Laboratory mission, we’re certainly not short of new things to look at. Early on Wednesday, the JPL team released images from the rover’s raised mast. Atop the mast is the blocky ChemCam laser, two Mastcams and four Navcams — a collection of equipment that is colloquially referred to as the rover’s “head.” As soon as the mast was deployed, mission controllers switched on the Navcams and commanded Curiosity to look around its new home.

First up was the striking image of the shadow of Curiosity’s “head,” then came the wonderful “Mojave Desert” view across Gale Crater to its rim. Now, in a new flood of hi-res imagery tonight, images of Curiosity’s deck have been released. Interestingly, there’s some debris strewn over the horizontal surface, indicating the one-ton rover’s landing kicked up a lot more than just dust.

During Curiosity’s descent and landing on Sunday night, the famous Sky Crane maneuver was used to lower the rover to the surface. In doing so, the rockets attached to the platform blew away the surface layers of regolith and small rocks, exposing what appears to be bedrock. The craters generated by the rocket thrust is clearly seen in a couple of Navcam images. Although dust was bound to be thrown into the air, inevitably settling on the rover, small rocks also appear to have been blasted onto the rover’s deck. The largest rock pieces appear to be no bigger than the size of a dime — when comparing them with the dimensions of the Radiation Assessment Detector (RAD) instrument (in the top left of both frames in the image above). The RAD’s circular “window” is roughly the size of a coaster.

Could the small rocks cause issues with the operation of instrumentation mounted on the rover’s deck? Were they expected to be blown from the ground onto the deck? It will be interesting to hear what will be discussed by the MSL team during Thursday’s 10 a.m. PDT press briefing.

All raw images were grabbed from the NASA JPL mission site.

More cool raw Navcam pics:

The high-gain antenna that will be used for direct communication with Earth is operational. Credit: NASA/JPL-Caltech

The high-gain antenna that will be used for direct communication with Earth is operational. Credit: NASA/JPL-Caltech (levels adjusted)

Curiosity's wheels as imaged by Navcam Left A. Credit: NASA/JPL-Caltech

Curiosity’s wheels as imaged by Navcam Left A. Credit: NASA/JPL-Caltech (levels adjusted)

Sol 2: Welcome to Gale Crater… A Martian “Mojave Desert”

The view from Curiosity's Navcam -- panorama mosaic of Gale Crater. Credit: NASA/JPL-Caltech

The view from Curiosity’s Navcam — panorama mosaic of Gale Crater. Credit: NASA/JPL-Caltech

NASA’s Mars Science Laboratory is only just beginning its mission and it is already showing us a completely different Martian landscape. However, the rover’s mast has just been raised and returned an eye-level view through the mission’s Navcam to reveal a landscape that looks like the… Mojave Desert. During Wednesday’s NASA press briefing, Curiosity’s Chief Scientist John Grotzinger remarked on the striking familiarity of the “Earth-like” plain with the crater rim in the distance. There is even a little haze in the air that Grotzinger likened to “LA smog.”

While we wait for more incredible views of Mars seen through the eyes of our robotic emissary, it’s easy to get lost in this raw image and imagine how familiar this scene will look when we see it in color.

Warren Olney Show: Mars Curiosity Landing — Featuring JPL’s Allen Chen and… Me!

JPL's Allen Chen, the Flight Dynamics and Operations Lead for the Mars Science Laboratory Entry, Descent, and Landing team. Credit: NASA/JPL

JPL’s Allen Chen, the Flight Dynamics and Operations Lead for the Mars Science Laboratory Entry, Descent, and Landing team. Credit: NASA/JPL

As the Mars dust settles — figuratively and literally — after a hugely successful Mars Science Laboratory landing, I was asked to appear on KCRW’s “To the Point” radio show with Warren Olney. I’ve chatted with Warren a few times and it’s always fun — he’s is a knowledgeable and inquisitive host with a passion for all things space. But Monday’s show was a little bit special. The “voice” of NASA JPL’s mission control was also invited.

Throughout Sunday night’s excitement, JPL’s Allen Chen calmly announced each stage of Curiosity’s entry, descent and landing from mission control. As Flight Dynamics and Operations Lead for the Mars Science Laboratory Entry, Descent, and Landing team, it was Allen’s job to remain cool, calm and collected throughout. Listen to hear what he had to say to Warren and myself:

Here’s Allen in action:

Sol 0: Curiosity Bathes in First Martian Sunset (Photos)

This is the view from the front Hazcam of the Mars Science Laboratory "Curiosity." Mount Sharp is in shot. Credit: NASA/JPL-Caltech

This is the view from the front Hazcam of the Mars Science Laboratory “Curiosity.” Mount Sharp is in shot. Credit: NASA/JPL-Caltech

This is the first high-resolution photograph to come from NASA’s Mars Science Laboratory Curiosity that landed in the guts of Gale Crater last night. In the shot from the front “hazcam” is an amazing view of the now-famous Mount Sharp. In the photo below, the rear hazcam has captured the Sun low in the sky — the first of, hopefully, thousands of sunsets Curiosity will experience.*

Read more on Discovery News…

The view from the rover's rear hazcam, featuring the rim of Gale Crater and the light of a setting Martian Sun. Credit: NASA/JPL-Caltech

The view from the rover’s rear hazcam, featuring the rim of Gale Crater and the light of a setting Martian Sun. Credit: NASA/JPL-Caltech

*CORRECTED: This post originally misinterpreted the time of the photograph to be in the Martian morning. The images were actually taken shortly after Curiosity’ landing during the Martian evening.

Mars Rover Curiosity Begins its Martian Domination

Now THAT’s how you land a rover!

NASA’s Mars Science Laboratory “Curiosity” has landed inside Gale Crater in a damn-near perfect entry, descent and landing (EDL). What’s more, the first photos from the Martian surface were also received only minutes after confirmation of touchdown, depicting a wonderfully smooth plain littered with small rocks.

The first low resolution photo from Curiosity’s hazcam showed a horizon plus one of the rover’s wheels. And then a higher-resolution hazcam view streamed in. Then another — this time showing the shadow of the one-ton rover — an image that will likely become iconic for tonight’s entire EDL. The concerns about the ability of NASA’s orbiting satellite Mars Odyssey to relay signals from Curiosity rapidly evaporated.

Curiosity had landed and it was already taking my breath away.

After a long night in the “Media Overflow” trailer at NASA’s Jet Propulsion Laboratory, I felt overwhelmed with emotion. On the one hand, I was blown away by ingenuity of mankind — the fact we can launch such ambitious missions to other worlds is a testament to exploration and science in its purest form. But I was also overwhelmed by the spirit of JPL’s scientists and engineers who made this happen. I was humbled to be a member of the media covering the event from mission control. It was an experience I’ll never forget.

Tonight is a night to forget politics, this is a night to celebrate NASA and the incredible things they do.

I’ll post more soon, including photos from the event, but for now I need sleep.

What a night.

Welcome to Gale Crater. Credit: NASA

Welcome to Gale Crater. Credit: NASA