My Struggle With Math, Why It Matters, and Why It Really Doesn’t

“You know what it means? You’re an artist, not a physicist.”

Twenty years later, those words still haunt me.

I was actually a bit surprised to remember this quote, but after a conversation with astrophysicist, science communicator and Twitter buddy Sophia Gad-Nasr, who was commenting on a tweet from @dsxnchezz, I found myself emotionally thinking back to a personal struggle I wanted to share.

The tweet:

The story:

A Long Time Ago In a University Far, Far Away

[Photo by Johannes Plenio from Pexels]

My first semester of studying physics at university was unexpectedly (though, in hindsight, not so surprisingly) rough: I had to confront a demon that I’d spent years running away from. You see, I’m bad at math (or, as we Brits like to call it, “maths”), to the point where I used to be convinced that I wouldn’t progress anywhere in physics. Mental arithmetic is very difficult, calculus is hell, I’m no fan of trig, and I have to spend an extra minute double checking my additions (employing the use of all my available digits). Usually, this would be a minor annoyance, but in the winter of 1999, it became an obvious gaping wound in my abilities as a wannabe astrophysicist. Throw this on top of my history of anxiety, rather than confronting the issue, I’d bury it. If I didn’t think about it, where’s the worry? Unfortunately, I had to think about it.

All the way through my GCSEs and A Levels (the qualifications that you’d take at school before going to university in the late 90’s in the UK) I was a decent student. I was never late with coursework, never skipped class and always tried my best. I was extremely lucky to have very supportive parents and very privileged to live 15 minutes from what I consider to be the best comprehensive (re: state-funded) school in my hometown of Bristol. While not a “straight A” student, I certainly performed well and, during my A Levels I was able to pick up a pleasing A, B and C, for Technology, Physics, and Geography, respectively, nabbing the exact number of UCAS points I needed to secure a place at my first choice university on the beautiful west coast of Wales — The University of Wales, Aberystwyth.

I was riding high and the future was bright. But I always had this baggage buried deep in the back of my brain: I’m bad at math.

If you’ve been through the UK route to university physics, you’ll notice a big, red, flashing neon sign of a problem with my choice of A Levels: 

🚨 THERE’S NO MATHEMATICS 🚨

This fact wasn’t lost on the university representatives at the various higher-education fairs I’d attended from 1996 to 1998. A physics rep from one of the more “prestigious” universities had the biggest assholey reaction when I said that, yes! it is true that I’m not studying mathematics at A Level: “You can forget doing physics, then,” he scoffed, before chuckling about it to his buddy. Yep, chuckled. His disdain for the gall a math-anemic student had to approach him to inquire about their astrophysics course was too much for his stupendous brain to bear, it seemed. Fortunately, he was an outlier, the majority of other reps were generally kind, supportive and helpful, but it gave me pause. Was I under-qualified? Was my inability to grasp mathematics going to be a real problem for my dream of studying black holes, galaxies, alien worlds and the Big Bang?

Screw those guys, I thought. Fortunately the detractors at that phase of my education were rare and, though they did nothing to boost my confidence in math, they didn’t dull my excitement for studying physics university. Besides, I’d nailed my grades! Onward to Aberystwyth!

***Aside: Before I continue, I need to emphasize that all my (many) years at university were amazing. To have the wonderful good fortune to live and study in arguably one of the most beautiful places in the world was humbling. As a university town, Aber couldn’t have been a better choice. I made a diverse group of lifelong friends, got a wonderful education, somehow managed to spend a semester in the Arctic studying the aurora, grew as a person, lost an appendix, and developed an appreciation for the Welsh language, all while enjoying the highest density (at the time) of pubs per capita. I only have fond memories of the physics department and all the members of staff and fellow students. The following is more of a conversation about the culture in higher education and how certain assumptions can damage the confidence of students, possibly creating an intellectual barrier for their progression, inspired by the above conversation with Sophia.***

So, with my A Levels behind me, I was ready for university. I was 18 and excited to get the introductory physics courses out of the way so I could dive into the wonders of the cosmos. Ha! Sorry, I couldn’t write that with a straight face; I was excited the meet girls and have a great time playing pub golf and partying until 5am. But once the alcohol haze had lifted after Freshers Week, reality struck. Because I didn’t have a mathematics A Level, I had to take an introductory math course “to get me up to speed” with the mathematical tools I’d need to complete my undergraduate degree. This wasn’t an unfair ask and I had little problem with tackling it. The university had a system in place that made an honest and clear effort to make sure no student was left behind. In some ways, the fact that I had to confront my math angst head-on was reassuring. After all, how the heck could I navigate a career in physics while avoiding math at all costs? Spoiler: I couldn’t and I didn’t want to. It was a fresh start, a ripping of the Band Aid, an anxiety detox. I was ready. Hit me!

To say I enjoyed these early math lectures would be a lie, but I did get a sense of satisfaction from taking them. The lecturers were generally good and delivered a well-organized curriculum. Alongside the intro math, I was doing all the other stuff my colleagues were doing, except for the theoretical classes that left smudges of squiggled chalked integrals and partial differential equations on the blackboard in the lecture theater when my introductory class started. In these early days of my university career, those squiggles may as well have been Egyptian hieroglyphics. But, gradually, like a sapling unfurling from the dirt, I was developing my own way of dealing with math: repetition. I was making progress and I could imagine that, one day, I’d be like my physics friends who could stand up in front of a lecture hall, drawing squiggles with my piece of chalk and explaining why Fourier transforms are so great. Although much of my learning was done parrot fashion, without a lot of comprehension about what I was doing at the time, I was able to, at worst, wing it.

So far, so good, right?

The Pen Game

The whole point of this story is leading to one, singular — nay, pivotal — moment in a cramped office of my first-year supervisor. Every week, small groups of us had meetings with our allocated lecturer-supervisors. My supervisor (who will remain unnamed because he’s not really the point of this story, though he did get under my skin), an older, well-respected professor with thick-rimmed glasses and eccentric humor, really didn’t want to be there. And nor did I. Each week, he’d try to get the most entertainment out of his supervised students, including me and three others who were suffering from the same no-math affliction. These meetings were supposed to be for us to have a space to discuss our math-related struggles and progress, with no fear of embarrassment.

To pass the time, and enforce his own quirky way of teaching, the professor would have this recurring game where he’d drop a bunch of pens on his desk and ask us what number it represents. It was maddening, didn’t make sense and he’d always make us feel shitty for making a blind guess. What’s more, we didn’t get the point, was this a profound lesson in math? Philosophy? Counting the seconds until all the pens had stopped rolling? I took a flier: as the pens landed, some would cross another on the desk, coming to a stop, so I counted the number of crossed pens and shouted “Two!”

Without hesitation, he replied, “No! Wrong! You’re wrong!” And so he’d drop the pens again and ask the same silly question, “What number?”

Obvious eccentricities to one side, the good professor was pissing me off. And I suppose that was the point. So, the following week I went into that office and paid attention to everything. I made a note of the time, the air temperature, the number of other items on his desk… and then I saw it. The four of us sat down and the professor grabbed his usual pens and dropped them on the desk. Without waiting for him to say a word, I blurted “FIVE!”

He looked at my smiling face and nodded. Fireworks erupted in my brain, I’d passed his stupid test. My three colleagues looked at me in astonishment. “Let’s do it again,”—he dropped the pens a second time—”how many?”

“Eight!” I felt like I’d won the professor’s admiration and approval. I might be bad at math, but damn I’m good at this game. He smiled and nodded again. He asked me to tell everyone how I did it. Feeling cocky, I just said, “look at his fingers.” Every time he dropped the pens, he’d lean on the desk, extending a different number of fingers after each drop. All I was doing was counting his goddamn fingers!

And now for the lesson of this stupid game, words that I’ve never forgotten.

“Whenever I’ve played this game,” he started, “it’s always artists who guess it correctly, physicists focus too much on the pens. You know what it means? You’re an artist, not a physicist.” He pointed at me, no longer smiling.

Besides my confusion that it was apparently a bad thing to correctly find a solution to this stupid game, why was I being branded an “artist”? There is nothing wrong with being an artist, or so I thought, but I had chosen a career path to become a physicist. What’s more, I was in a class specifically focused on supporting students who lacked the math qualifications to do physics. It seemed like a teaching self-own. Over the years, I assumed it was his way to motivate me to work harder at math—yes! Reverse psychology! Shame me into doing better! But, nah, the opposite happened.

Impostor syndrome is something, I’ve recently realized, that goes hand-in-hand with my anxiety, so to get verbal confirmation of my personal doubt was like a punch to the gut. I was ready to quit; who was I fooling? I was out of my depth. My excitement for physics fell off a cliff and, with the endorsement of an authority figure who, for whatever reason wanted to make his students feel shitty, had rubber-stamped my self-doubt.

A Better Way

I didn’t quit, but if it wasn’t for the social group that I had, I might have. My challenge with math wasn’t the only mountain I was climbing at the time. Like most undergrad students at university, simply navigating life was hard. But I was lucky, I had a girlfriend and a solid group of friends, a supportive family and a love for the student life. However, drop-out rates in physics are high, or they were 20 years ago, and what was becoming abundantly clear was this arrogant assumption that to be good at physics, I had to be good at math.

After the Pen Game, I became acutely aware of the teaching practices of my lecturers. Lessons would begin with innocuous, throw-away statements like (I paraphrase), “you all know this already,” “you hibernated through school/lived under a rock if you don’t know this,” “let’s skip these steps, if you don’t get it, read a book,” and, my personal favorite, “don’t come crying to me if/when you fail.” Back then, those statements weren’t strange, they were simply educators—many of whom didn’t really want to be teaching, they had research grants to apply for—trying to be witty or, under pressure to deliver their class, they really wanted to make sure they could fit in the entire syllabus in the allotted time. I felt even more precarious when my introductory math courses finished and I should have been “up to speed” with the mathematical tools for a bright physics future. Alas, though I was undoubtedly better at math, my confidence had ebbed to zero.

Fortunately, my want to continue living the university life outweighed my anxieties and I learned to live with it. I didn’t ask for help (in hindsight, I should have), and math just became my dirty secret. It was a specter that followed me around the campus. That said, I was good at physics; I had a great conceptual grasp of all the topics and meandered my way through the math. But the real turning point for me happened when studying the final semester of my Masters year in the high-Arctic, on the Norwegian archipelago of Svalbard. The EU-funded exchange program (Reason 1,324 why I have very strong feelings against Brexit; I took for granted the research and study programs that the UK could seamlessly participate in and I’m devastated that the next generation of students/researchers may not have the same, broad opportunities), that gave me the chance to experience real research on the aurora and other space weather phenomena in this incredible part of the world, made me think of math differently. I’d found my passion—the sun-Earth interaction—and suddenly, I realized math wasn’t the barrier. It was my anxiety and fear. I’d built mathematics up into this impenetrable barrier rather than viewing it as the tool that builds physics theory. Long story short, I had to literally travel to the ends of the Earth (well, the top of the Earth) for me to realize that, ya know, math ain’t that bad.

I went on to do a Ph.D in solar physics—specifically coronal loops, an origin of space weather—and, during a random research trip to Hawaii to work with colleagues who were based in Honolulu, I met my wife. So, I have no regrets and, as I type this from my computer at home in Los Angeles, I remember my struggle with math with fondness, oddly enough. And I have no problems using all my available digits to do basic arithmetic. I even do it in public.

We live at a time where science is regularly overlooked and often derided (re: climate change deniers, anti-vaxxers, flat-earthers etc.) and we need all the most talented critical thinkers to take on careers in science, technology, engineering, art, and mathematics (STEAM) in order to confront some of the biggest challenges facing our planet. So, educators of all levels, never make assumptions of the abilities of your students; just a throwaway comment like “I’m sure you already know this…” can boost needless anxiety in learning.

And, whatever you do, never play the Pen Game.