If Aliens Pilot Interstellar Object ‘Oumuamua, They Snubbed Us

The Seti Institute has monitored the object for radio transmissions, just in case it isn’t natural

We humans are a sensitive bunch. We keep pondering the question: “are we alone?” If we consider the answer is a “yes,” we then start having an existential crisis over our place in the universe. But if the answer is a “no,” a can of worms open and we start asking even more questions. “If they’re out there, where are they?” “Isn’t it a bit weird we haven’t heard from our extraterrestrial neighbors?” “Are they just too far away for us to communicate?” and my personal favorite: “Have they consciously decided not to communicate with us because we’re considered not worth communicating with?!” The Fermi Paradox is certainly as paradoxical as they come.

Cue a random object that cruised through our solar system last year. The interstellar visitor zoomed right into our interplanetary neighborhood, used the Sun’s gravity for a cheeky course correction, and then slingshotted itself back out into deep space. The whole thing happened so quickly that astronomers only noticed when the thing was speeding away from us at high speed.

Naturally, we took a hint from science fiction, remembering Arthur C. Clarke’s classic novel “Rendezvous With Rama” — when a huge artificial object appears from interstellar space and a brave team of astronauts are sent to intercept it. Might this interstellar object also be artificial? After all, it has an odd, tumbling shape (like a spinning cigar) and the precision at which it flew past us with the trajectory it did (using the Sun to change its direction and speed of travel) just feels artificial.

So, with the help of the SETI Institute’s Allen Telescope Array (ATA) in California, astronomers decided to take aim at the departing object from 
Nov. 23 and Dec. 5, 2017, when it was 170 million miles from Earth. The objective was to listen out for artificial radio transmissions that might reveal any kind of extraterrestrial intelligence. By monitoring frequencies from 1 to 10 GHz (at 100 MHz intervals), the ATA would be able to detect a very low powered onmidirectional transmitter, with a transmitting power as low as 10 Watts — the approximate equivalent to a citizen band radio.

According to the SETI study to be published in the February 2019 issue of Acta Astronautica, no signals were detected. Though this is obviously a blow for working out whether this thing was being actively piloted by some kind of intelligence, it does narrow down the true nature of the object, that has since been named ‘Oumuamua — which, in Hawaiian, roughly means “scout,” or “messenger.”

“We were looking for a signal that would prove that this object incorporates some technology — that it was of artificial origin,” said Gerry Harp, lead author of the study, in a SETI Institute statement. “We didn’t find any such emissions, despite a quite sensitive search. While our observations don’t conclusively rule out a non-natural origin for ‘Oumuamua, they constitute important data in assessing its likely makeup.”

Although this doesn’t prove ‘Oumuamua isn’t an alien spacecraft, it does put limits on the frequencies it could be transmitting on, if it is transmitting. And even if it isn’t transmitting, it doesn’t mean it’s not artificial. Could it be an ancient spacecraft that’s been sailing the interstellar seas for millions or billions of years, long after its intelligent occupants have died? Or long after its artificial intelligence has run out of energy? 

Or — and this is the big one — did it zoom through our solar system, aware of our presence, and not bother communicating with us? If that scenario played out, we need to re-open that can o’ worms and try to understand where we stand in the universal ecosystem of competing intelligences. Perhaps we are the cosmic equivalent of an ant colony; our intelligence just isn’t worth the time when compared with the unimaginable alien intelligences that have the technology to send ‘Oumuamuas to probe distant star systems for life.

Alas, it’s probably a case of Occam’s razor, where the simplest explanation is most likely the correct one: ‘Oumuamua is probably a strange-looking asteroid or ancient comet that was randomly shot at us by some distant star system and astronomers were lucky to detect it. But, we still need to ponder the least likely explanations, you just never know…

InSight Mars Lander Gets Used to Its New Digs, Snaps a Selfie

The NASA mission looks like it’s getting comfortable in Elysium Planitia.

The view from InSight’s Instrument Deployment Camera (IDC), which is attached to the lander’s robotic arm, looking over the flat and rock-strewn plane of Elysium Planetia, on sol 14 of its mission. The lens flare is caused by the Sun that is just out of shot [NASA/JPL-Caltech]

Like any self-respecting social media influencer, Mars’s latest resident is hard at work snapping photos of its new digs. The robot has even thrown in a beautiful selfie for good measure.

NASA’s InSight lander touched down on the Red Planet on Nov. 26 and since then its mission controllers have been hard at work checking out the instrumentation and surroundings. Using its Instrument Deployment Camera, or IDC, InSight has been giving us a tour of its permanent home. Fans on social media have even been nominating names for the rocks that can be seen embedded in the dusty regolith — the only rocks we’ll see close up for the duration of the mission. 

Dusty with a dash of small rocks, perfect ground for InSight’s work [NASA/JPL-Caltech]

Very early on, NASA scientists knew they’d landed in the right place. The beautifully-flat plain of Elysium Planitia has a landscape that is in stark contrast to Curiosity’s Mount Sharp environment; instead of seeing a smorgasbord of geological features — created by ancient water action and ongoing aeolian (wind-blown) processes — Elysium is flat, dusty and appears to only have small-ish rocks strewn over its surface. You see, InSight cares little for what’s on the surface; the science it’s after lies below the stationary lander, all the way to the planet’s core.

“The near-absence of rocks, hills and holes means it’ll be extremely safe for our instruments,” said InSight’s Principal Investigator Bruce Banerdt of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., in a statement. “This might seem like a pretty plain piece of ground if it weren’t on Mars, but we’re glad to see that.”

One of InSight’s three legs can be seen here slightly sunken into the Martian regolith, showing us how soft and powdery the uppermost layers of the mission’s landing zone is. Oh, and that rock to the right? Luckily InSight missed it [NASA/JPL-Caltech]

Now that InSight’s raw image archive is churning out new pictures daily, mission scientists are scoping out its “work space” directly in front of the lander’s robotic arm. Over the coming weeks, optimal positions for InSight’s two main experiments — the Seismic Experiment for Interior Structure (SEIS) and Heat Flow and Physical Properties Package (HP3) —will be decided on and then commands will be sent to the lander to begin the painstaking task of retrieving them from its deck and setting them down on the ground. The main task will be to determine exact locations that are smooth, flat and contain small rocks that are no bigger than half an inch. This will ensure stable contact with the ground so seismic and heat flow measurements can be continuously carried out. InSight is basically going to give Mars an internal examination 24/7, listening to the slightest seismic waves like a doctor would listen to your heartbeat. And it looks like InSight has landed inside a depression, likely created by an ancient crater that has been filled with loose material over time — this is great news for HP3 that has a self-digging probe (called the “mole”) that will now have an easier task of burrowing meters underground.

But what about that selfie? Well, here you go:

InSight says hi! [NASA/JPL-Caltech]

This photo is a mosaic composed of 11 different images snapped by the lander’s robotic arm-mounted camera. You can see the lander’s open solar panels and stowed instrumentation on the deck, including SEIS and HP3. And no, the selfie isn’t a fake; by sticking a bunch of individual photos together, they’ve overlapped to edit out any trace of the arm itself. Curiosity does the same thing; so did Opportunity and Spirit. InSight’s older sibling, Phoenix also did it. Selfies are as much the rage on Mars as they are on Earth. Not only do they look cool, they are also useful for mission controllers to monitor the build-up of dust on solar panels, for example.

For now, as we await the science to start flowing in (well, there’s been some early science before the robot has even gotten started), enjoy checking back on InSight’s raw photos, it won’t be long until we’ll be browsing through potentially thousands of snaps from Elysium Planitia. Oh, and don’t forget about Curiosity that’s still going strong on the slopes of Mount Sharp!

Voyager 2 Has Left the (Interplanetary) Building

The NASA probe was launched in 1977 and has now joined its twin, Voyager 1, to begin a new chapter of interstellar discovery

Both Voyager 1 and 2 are sampling particles from the interstellar medium, becoming humanity’s furthest-flung missions into deep space [NASA/JPL-Caltech]

Carolyn Porco, planetary scientist and lead of the NASA Cassini mission imaging team, probably said it best:

Voyager 1 made us an interstellar species; 6 yrs later, Voyager 2 makes it look easy. While these are historic, soul-stirring achievements, I am most happy right now that Ed Stone, the best Project Scientist who ever lived, lived to see this moment. 

via Twitter

It can be easy to lump today’s announcement about Voyager 2 entering interstellar space as “simply” another magnificent science achievement for NASA — but that would be too narrow; the Voyager spacecraft have become so much more. They represent humanity at our best; our will to explore, our need to push boundaries, our excitement for expanding the human experience far beyond terrestrial shores. They also act as a means to understand the sheer scale of our solar system. And what better way to measure that scale than with a human life. 

Ed Stone started working on the Voyager Program in 1972 as a project scientist. Now, at 82 years old, he’s still working on the Voyagers nearly half a century later as they continue to send back data from the frontier beyond our solar system. When we start measuring space missions in half-centuries, or missions that have lasted entire careers, it becomes clear how far we’ve come. Not only does NASA build really tough space robots that surpass expectations routinely, returning new discoveries and revelations about the universe that surrounds us, the Voyagers have become a monument to the essence of being human, something with which Stone would probably agree.

Although most of the instruments aboard the Voyagers are no longer functional, both missions are still returning data from the shores of the interstellar ocean and, on Nov. 5, mission controllers noticed that one of Voyager 2’s instruments, the Plasma Science Experiment (PSE), had detected a rapid change in its surrounding environment. Used to being immersed the comparatively warm and tenuous solar wind flowing past it, its plasma measurements detected a change. The spacecraft had passed into a region of space where the plasma was now denser and cooler. Three other particle experiments also detected a dramatic change; solar wind particle counts were down, but cosmic ray counts precipitously increased. Voyager 1’s PSE failed in 1980, so couldn’t measure this boundary when it entered interstellar space in 2012, so Voyager 2 is adding more detail about what we can expect happens when a spacecraft travels from the heliosphere, through the heliopause and into interstellar space. 

[NASA/JPL-Caltech]

“There is still a lot to learn about the region of interstellar space immediately beyond the heliopause,” said Stone in a NASA statement.

The heliosphere can be imagined as a vast magnetized bubble that is generated by the Sun. This bubble is inflated by the solar wind, a persistent stream of solar particles that ebb and flow with the Sun’s 11-year cycle. When the Sun is at its most active, the bubble expands; at its least active, it contracts. This dynamic solar sphere of influence affects the flux of high-energy cosmic rays entering the inner solar system, but the physics at this enigmatic boundary is poorly understood. With the help of the Voyagers, however, we’re getting an in-situ feel for the plasma environment at the boundary of where the Sun’s magnetism hits the interstellar medium.

To achieve this, however, we had to rely on two spacecraft that were launched before I was born, in 1977. Voyager 2 is now 11 billion miles away (Voyager 1 is further away, at nearly 14 billion miles) and it took the probe 41 years just to reach our interstellar doorstep. Neither Voyagers have “left” the solar system, not by a long shot. The gravitational boundary of the solar system is thought to lie some 100,000 AU (astronomical units, where one AU is the average distance from the Earth to the Sun), the outermost limit to the Oort Cloud — a region surrounding the solar system that contains countless billions of icy objects, some of which become the long-period comets that intermittently careen through the inner solar system. Voyager 2 is barely 120 AU from Earth, so as you can see, it has a long way to go (probably another 30,000 years) before it really leaves the solar system — despite what the BBC tells us.

So, tonight, as we ponder our existence on this tiny pale blue dot, look up and think of the two space robot pioneers that are still returning valuable data despite being in deep space for over four decades. I hope their legacy lives on well beyond the life of their radioactive generators, and that the next interstellar spacecraft (no pressure, New Horizons) lives as long, if not longer, than the Voyagers.

Read more about today’s news in my article for HowStuffWorks.com.

  

Meanwhile, Curiosity Has Found Something Shiny On Mars

My precious…


This image was taken by Curiosity’s ChemCam: Remote Micro-Imager (CHEMCAM_RMI) on Sol 2242 (Nov. 26) [NASA/JPL-Caltech/LANL]

It’s always fun to browse through the raw image archive for any Mars mission. You see rocks, dust, more rocks and more dust, but then you see something strange, sitting atop the dirt that is like nothing you’ve seen before.

Once, there was a piece of plastic on the ground in front of Curiosity. Plastic! Not alien plastic though, it was likely something that fell off the rover. Mars rover Opportunity even found strange “blueberries” scattered over Meridiani Planum that turned out to be spherical hematite inclusions, basically little balls of mineral that were formed via water action in Mars’ ancient past.

Now there’s a shiny rock just sitting there, in front of Curiosity. 

Mars isn’t known for its shiny objects. Everything is a ruddy color (because of the iron-oxide-laced dust that covers everything) and dull. So, when mission controllers saw this small shiny object, it became a focus of interest. They’ve even named it “Little Colonsay.” Don’t get too excited for an explanation that’s too outlandish, but it will be an interesting find if it turns out to be what scientists think it is.

“The planning team thinks it might be a meteorite because it is so shiny,” writes Susanne Schwenzer, Curiosity mission team member.

Meteorites have been discovered on Mars before by the Mars rovers — and Curiosity is no stranger to finding space rocks strewn on the ground — though it would still be a rare find by Curiosity if it does turn out to be a (likely) metallic chunk of space rock. As pointed out by Schwenzer, the team intend to carry out further analysis of the sample, as well as some other interesting rocks, with Curiosity’s ChemCam instrument to decipher what it’s made of.

So as we welcome the InSight mission to the Red Planet to begin its unprecedented study of Mars’ interior, always remember there’s still plenty of gems sitting on the surface waiting to be found.

We Have a New Robot Heartbeat On Mars

After following InSight’s journey and dramatic landing on Mars, I’m now emotionally attached to the space robot.

The view from InSight’s Instrument Deployment Camera (IDC) that is attached to its robotic arm [NASA/JPL-Caltech]

It’s funny how our perception of the robots we send into space changes with the experiences we have with them. Take NASA’s InSight lander, for example.

I was thrilled to be able to see the mission launch on May 5 from my backyard. I was following the launch feed from my office in the early hours of the morning — lift-off was just after 4 a.m., so I was particularly proud that I hadn’t fallen asleep in my home office. Going outside, I looked to the northwest in hopes of glimpsing the light of the Atlas V-401 rocket as it rose into the dark pre-dawn skies. After I’d seen confirmation via the live-stream video of launch from Vandenburg Air Force Base (130 miles to the northwest of my home in Woodland Hills), I stood precariously on a patio chair to get a better view over my roof and… there it was! A bright plume rising and moving very fast toward the south. And then it was gone; the first ever mission to Mars launched from California was on its way into interplanetary space.

Needless to say, I quickly became invested in this space robot, but before I witnessed its launch from afar, it was another anonymous piece of cold space hardware. As soon as I saw its rocket plume, the mission became “real” and InSight was warmly embedded in my emotions.

NASA likes to play up the dangers of sending missions to Mars — and I can’t blame them; more Mars missions have failed than have succeeded. But in recent years, NASA has beaten the odds and landed all of their surface missions and inserted a bunch of satellites into orbit successfully. The last failed NASA mission to Mars was nearly 20 years ago (the Mars Polar Lander in 1999), everything else since — Mars Odyssey, the two Mars Exploration Rovers, Mars Reconnaissance Orbiter, Phoenix lander (InSight’s twin), Curiosity, MAVEN — have all been resounding successes. 

JPL’s “lucky peanuts” at mission control obviously paid off.

Then, on Monday (Nov. 26), after nearly seven months since I saw it fly over my roof, InSight landed on the dusty surface of Mars. 

I was fortunate to be at NASA’s Jet Propulsion Laboratory (JPL) on that day, covering the event for Scientific American and HowStuffWorks, and it was a thrill to be in the hub of all the festivities and spend time with my fellow science communicators. JPL always puts together a great event — whether that be the landing of Curiosity over six years ago, or the sad farewell of Cassini last year — and this was no different. The air was thick with anticipation, and all of the mission scientists, managers and engineers were more than willing to share their stories with the dozens of journalists, reporters, social media peeps and TV crews who were in attendance.

Then it was time for landing. 

Sending a mission to Mars is risky and, as already pointed out, in the earlier days of humanity throwing stuff at Mars the majority of the missions failed. So, understandably, everyone had a healthy level of nervousness that there was always a chance that InSight might just make another (expensive) crater in the Martian dirt. But that wasn’t to be. And by all accounts, the landing couldn’t have gone better.

InSight and MarCO mission controllers celebrate the landing with NASA Administrator
Jim Bridenstine (far left) at NASA JPL 

The two Mars Cube One (MarCO) spacecraft that were flying with InSight during its time cruising from Earth became the undisputed silicon heroes of the day. Their purpose was to relay telemetry data from InSight as the lander slammed into the Martian atmosphere to commence its hair-raising entry, descent and landing (EDL) on Mars — a.k.a. the Seven Minutes or Six and a Half Minutes Of Terror, depending on who you talk to. As InSight would be landing in a region where there wouldn’t be a satellite overpass for several hours after landing, MarCO became the relay that, in real time (minus the several minute lag-time that it takes for any signal to travel at the speed of light between Mars and Earth) prevented too many chewed fingernails and passed the message to mission control that the lander had landed safely and everything was, well, just perfect.

In the media area, with a live feed streaming from just next door on the JPL campus, any nervousness evaporated when we all cheered with the mission controllers who were celebrating on the screen. Memories of Curiosity’s landing came flooding back. NASA has done it again, we’re on Mars!

And then, despite warnings that it might be some time before we see the first view of Elysium Planitia from InSight’s camera, we became aware that the mood had changed in mission control. Managers were now huddled around a computer terminal. They were receiving the first image only a few minutes after touch down!

The first image from NASA’s Mars InSight mission was a dusty one — the black specks are dusty debris kicked up from the surface during landing. When NASA pops the lens cover, the fish-eye lens will have a clear view of its new, permanent home [NASA/JPL-Caltech]

Keep in mind that relaying this image would have been impossible without InSight’s MarCO travel buddies. The success of the mission didn’t depend on MarCO, but they sure made the landing event a more lively celebration, rather than a “yes we’re on Mars, but no pictures until tomorrow!” anticlimax. I asked a couple of the MarCO managers what was next for their robotic heroes, and they said that their mission was complete and that they were a proof of concept “that was now proven.” Apparently, managers for other robotic space missions are planning MarCO-like payloads for future missions. Justifiably so.

Monday was a blur, but I remember walking away from JPL feeling emotional and humbled. Humanity is capable of doing incredible, bold things, I thought to myself. Why can’t we be more like this? Discussing the nature of humanity and our contradictory ways can be saved for another day, however. 

Now that we’ve lived InSight’s dramatic journey to Mars, the lander has become more than a robot, it’s a bona fide Mars explorer that, like Curiosity and all the landers and rovers that have come before it, is an extension of the human experience. Designed to live in the Martian environment, InSight has arrived home. Hopes are high for some incredible scientific discoveries about Mars’ interior and its evolution, but I’m also hopeful that the mission will inspire people to embrace our natural urge to explore and discover new things about our universe. This time exploration will be done through the eyes of the newest space robot to join its Martian family, but some time in the next couple of decades, it will be human eyes exploring Elysium Planitia.

For more about the science behind InSight, read my articles for Scientific American and HowStuffWorks.com:

Rolling Stones May Have Given Phobos its Enigmatic Grooves


The impact crater Stickney (and the smaller crater Limtoc) as imaged by NASA’s Mars Reconnaissance Orbiter in 2008 [NASA/JPL-Caltech]

Earth has them. So does the Moon. As does Mars. And now we know dwarf planet Ceres has them, too. Could a Martian moon also have them? Well, according to new research, they could explain the mystery behind Phobos’ strange lines that are carved into its dusty surface.

What am I talking about? Boulders. Specifically boulders that have been on the move. Boulders that — in the presence of a gravitational field, no matter how weak — roll and bounce, leaving their grooves on some of our most beloved celestial bodies.

“These grooves are a distinctive feature of Phobos, and how they formed has been debated by planetary scientists for 40 years,” said planetary scientist Ken Ramsley (Brown University) who led the work, in a statement. “We think this study is another step toward zeroing in on an explanation.”

Ever since NASA’s Mariner and Viking missions spied Phobos’ lines in the 1970’s, scientists have debated what could have created them. The ancient natural satellite of Mars is only 27 kilometers wide and possesses long, etched lines that, in some cases, loop around the entirety of the moon’s circumference.

A popular hypothesis for these lines focused on the possibility that Phobos is a dying moon; the tidal forces from Mars ultimately pulling the body apart. In this scenario, the lines are a sign that the moon’s interior is crumbling, creating fault lines in the surface that our space robots have been able to image. Another idea is that the lines were created by crater chains; multiple impacts by smaller rocks that etched out long lines around Phobos’ surface.

However, according Ramsley’s study, which is published in the journal Planetary and Space Science, the real mechanism that created Phobos’ stripes is far more elegant, and more familiar to us Earthlings. What’s more, it was one of the original hypotheses that was posited when the lines were discovered over 40 years ago.

In 1998, NASA’s Mars Global Surveyor imaged Phobos’ stripes [NASA/JPL-Caltech/LLNL]

You see, Phobos has a huge, nine-kilometer-wide crater on one side, called Stickney (named after Angeline Stickney who motivated the search for Mars’ natural satellites in the late 19th Century), that was excavated by a massive impact in the moon’s ancient past. Using computer models, the researchers simulated what would happen post-impact and where the excavated material (including some hefty boulders) would have ended up. Although a huge quantity of material would have been lost to space during the Stickney impact, a few large rocks may have been kicked across the moon’s surface — these boulders would have rolled slowly, slow enough to be held in contact with Phobos, but fast enough, in some cases, to make more than one trip around the moon. 

But many of these lines intersect one another and don’t appear to be radially blasted from the crater. Also, there are regions on the surface where the lines entirely disappear. Ramsley’s simulation explains these oddities.

The simulations show that because of Phobos’ small size and relatively weak gravity, Stickney stones just keep on rolling, rather than stopping after a kilometer or so like they might on a larger body. In fact, some boulders would have rolled and bounded their way all the way around the tiny moon. That circumnavigation could explain why some grooves aren’t radially aligned to the crater. Boulders that start out rolling across the eastern hemisphere of Phobos produce grooves that appear to be misaligned from the crater when they reach the western hemisphere.

Brown University

This also helps to explain why many of these lines cross and superimpose themselves on one another: Grooves that were laid down by boulders rolling immediately after the impact were crossed by boulders that completed a complete traverse of the globe of the moon, some ending up where they started, minutes or hours later. This also explains why Stickney itself has grooves inside its crater basin.

The dark surface of Phobos with Mars as the backdrop, as seen by the European Mars Express [ESA]

But there’s a blank area on Phobos that appears to contain no grooves, a phenomenon that the simulation also addresses. This region is located at a comparatively low elevation part of Phobos, surrounded by a higher-elevation lip. “It’s like a ski jump,” said Ramsley. “The boulders keep going but suddenly there’s no ground under them. They end up doing this suborbital flight over this zone.

“We think this makes a pretty strong case that it was this rolling boulder model accounts for most if not all the grooves on Phobos.”

As a fan of rolling boulders on other worlds, I particularly enjoy imagining the lumbering slow roll of these massive rocks that circumnavigated Phobos. They had to keep their roll slow so not to achieve escape velocity, but fast enough to leave their indelible marks for humans to ponder their origins.

Here’s a Glimpse of the Jaw-Dropping Physics Surrounding Our Supermassive Black Hole

Simulation of Material Orbiting close to a Black Hole
Simulation of material orbiting close to a black hole (ESO/Gravity Consortium/L. Calçada)

Full disclosure: I wrote the press release for the University of Waterloo, whose researcher, Avery Broderick, developed the theory behind the accretion disk hotspots that have now been observed immediately surrounding our galaxy’s supermassive black hole. Read the full release on the UW website. Below is a long-form version of my article, including quotes from my interview with Broderick.

New observations of the center of our galaxy have, for the first time, revealed hotspots in the disk of chaotic gas orbiting our Milky Way’s supermassive black hole, Sagittarius A* (Sgr A*).

Using the tremendous resolving power of the ESO’s Very Large Telescope array in Chile, astronomers used the new GRAVITY instrument to detect the “wobble” of bright patches embedded inside the accretion disk that spins with the black hole. These bright features are clocking speeds of 30 percent the speed of light.

This is the first time any feature so close to a black hole’s event horizon has been seen and, using thirteen-year-old predictions by astrophysicists, we have a good idea about what’s causing the fireworks.

“It’s mind-boggling to actually witness material orbiting a massive black hole at 30 percent of the speed of light,” said scientist Oliver Pfuhl, of the Max Planck Institute for Extraterrestrial Physics and co-investigator of the study published in the journal Astronomy & Astrophysics. “GRAVITY’s tremendous sensitivity has allowed us to observe the accretion processes in real time in unprecedented detail.”

It is thought that the accretion disk surrounding a black hole is threaded with a powerful magnetic field that frequently becomes unstable and “reconnects.” Similar to the physics that drives the explosive flares in the Sun’s lower corona, these reconnection events rapidly accelerate the plasma in the disk, discharging vast quantities of radiation. These flaring events inside Sgr A*’s accretion disk create hotspots that get pulled in the direction of the material’s spin as it slowly gets digested by the black hole. The GRAVITY instrument was able to deduce that the accretion disk material is orbiting the black hole in a clockwise direction from our perspective and the accretion disk is almost face-on.

Artist’s impression of a hot accretion disk surrounding a black hole [NASA]
The original theory behind these hotspots was derived by Avery Broderick (University of Waterloo) and Avi Loeb (Harvard University) when they were both working at Harvard-Smithsonian Center for Astrophysics in the mid-2000s. In 2005 and 2006, the pair published papers that described theoretical computer models that simulated reconnection events in a black hole’s accretion disk, which caused intense heating and bright flares. The resulting hotspot would then continue to orbit with the speeding accretion disk material, cooling down and spreading out, before another instability and reconnection event would be triggered.

Their work was inspired by the detection of enigmatic bright flares erupting in the vicinity of Sgr A*. These flares were powerful and regular, occurring almost daily. At the time, a few theories were being explored—from supernovas detonating near the supermassive black hole, to asteroids straying too close to the black hole’s gravitational maw—but Broderick and Loeb decided to focus on the extreme region immediately surrounding the black hole’s event horizon.

“Avi and I thought: ‘well, if the flare timescales are close to orbital timescales around the black hole, wouldn’t it be interesting if they are actually bright features embedded in the accretion flow orbiting close to it?’,” Broderick told me.

Black holes are gravitational masters of their domain; anything that drifts too close will be blended into a superheated disk of plasma surrounding them. The matter trapped in the accretion disk then flows toward the event horizon—the point at which nothing, not even light, can escape—and consumed by the black hole via mechanisms that aren’t yet fully understood. The researchers knew that if their model was an accurate depiction of what is going on in the core of our galaxy, these hotspots could be used as visual probes to trace out structures in the accretion disk and in space-time itself.

This plot shows a comparison of the data with the hotspot model including various effects of General and Special Relativity. The continuous blue curve denotes a hot spot on a circular orbit with 1.17 times the innermost stable circular orbit, i.e. just outside the event horizon, of a 4 million solar mass black hole. The axis give the offset from the center in micro-arcseconds [MPE/GRAVITY collaboration]
It’s Sgr A*’s gravity of 4 million Suns that gives the flares a super-boost, however. “In our orbiting hotspot model, a key component of the brightening is actually caused by gravitational lensing,” added Broderick, referring to a consequence of Einstein’s general relativity, when the gravity of black holes warp space-time so much as to form lenses that can magnify the light from distant astronomical sources. “It’s like a black hole analog of a lighthouse.”

Now that GRAVITY has confirmed the existence of these hotspots, Broderick is overjoyed.

“I’m still absorbing it; it’s extremely exciting,” he said. “I’m bouncing around a little bit! The fact you can track these flares is completely new, but we predicted that you could do this.”

The GRAVITY study is led by Roberto Abuter of the European Southern Observatory (ESO), in Garching, Germany, and it describes the detection of three flares emanating from Sgr A* earlier this year. Although the hotspots cannot be fully resolved by the VLT, with the help of Broderick and Loeb’s predictions, Abuter’s team recognized the “wobble” of emissions from the flares as their associated hotspots orbited the supermassive black hole.

This discovery opens a brand-new understanding of the environment immediately surrounding Sgr A* and will complement observations made by the Event Horizon Telescope (EHT), an international collaboration of radio telescopes that are currently taking data to acquire the first image of a black hole, which is expected early next year.

Broderick hopes that these advances will help us to understand how black holes grow and consume matter, and if the predictions of general relativity break down at one of the most gravitationally extreme environments in the universe. But he’s most excited about how the first EHT image of a black hole will impact society as a whole: “It’s going to be a wonderful event, I think it will be an iconic image and it will make black holes real to a lot of people, including a lot of scientists,” he said.

Aside: In 2016, I had the incredible good fortune to visit the VLT at the ESO’s Paranal Observatory as part of the #MeetESO event. I interviewed several VLT and ALMA scientists, including Oliver Pfuhl, and helped produce the mini-documentary below:

Water Could Kill Life On Mars

A view from the Viking 1 deck, showing trenches its robotic arm dug out to acquire samples for testing [NASA/JPL-Caltech/Roel van der Hoorn]

When rains came to one of the driest places on Earth, an unprecedented mass extinction ensued.

The assumption was that this rainfall would turn this remote region of the Atacama Desert in Chile into a wondrous, floral haven — dormant seeds hidden in the parched landscape would suddenly awake, triggered by the “life-giving” substance they hadn’t seen for centuries — but it instead decimated over three quarters of the native bacterial life, microbes that shun water in favor of the nitrogen-rich compounds the region has locked in its dry soil.

In other words, death fell from the skies.

“We were hoping for majestic blooms and deserts springing to life. Instead, we learned the contrary, as we found that rain in the hyperarid core of the Atacama Desert caused a massive extinction of most of the indigenous microbial species there,” said astrobiologist Alberto Fairen, who works at Cornell Cornell University and the Centro de Astrobiología, Madrid. Fairien is co-author of a new study published in Nature’s Scientific Reports.

“The hyperdry soils before the rains were inhabited by up to 16 different, ancient microbe species. After it rained, there were only two to four microbe species found in the lagoons,” he added in a statement. “The extinction event was massive.”

El Valle de la Luna (Valley of the Moon) near San Pedro de Atacama looks very Mars-like [photo taken during #MeetESO in 2016, Ian O’Neill]

Climate models suggest that these rains shouldn’t hit the core regions of Atacama more than once every century, though there is little evidence of rainfall for at least 500 years. Because of the changing climate over the Pacific Ocean, however, modern weather patterns have shifted, causing the weird rain events of March 25 and Aug. 9, 2015. It also rained more recently, on June 7, 2017. Besides being yet another reminder about how climate change impacts some of the most delicate ecosystems on our planet, this new research could have some surprise implications for our search for life on Mars.

Over forty years ago, NASA carried out a profound experiment on the Martian surface: the Viking 1 and 2 landers had instruments on board that would explicitly search for life. After scooping Mars regolith samples into their chemical labs and adding a nutrient-rich water mix, one test detected a sudden release of carbon dioxide laced with carbon-14, a radioisotope that was added to the mix. This result alone pointed to signs that Martian microbes in the regolith could be metabolizing the mixture, belching out the CO2.

Alas, the result couldn’t be replicated and other tests threw negative results for biological activity. Scientists have suggested that this false positive was caused by inorganic reactions, especially as, in 2008, NASA’s Phoenix Mars lander discovered toxic and highly reactive perchlorates is likely common all over Mars. Since Viking, no other mission has attempted a direct search for life on Mars and the missions since have focused on seeking out water and past habitable environments rather than directly testing for Mars germs living on modern Mars.

With this in mind, the new Atacama microbe study could shed some light on the Viking tests. Though the out-gassing result was likely a false positive, even if all the samples collected by the two landers contained microscopic Martians, the addition of the liquid mix may well have sterilized the samples — the sudden addition of a large quantity of water is no friend to microbial life that has adapted to such an arid environment.

“Our results show for the first time that providing suddenly large amounts of water to microorganisms — exquisitely adapted to extract meager and elusive moisture from the most hyperdry environments — will kill them from osmotic shock,” said Fairen.

Another interesting twist to this research is that NASA’s Mars rover Curiosity discovered nitrate-rich deposits in the ancient lakebed in Gale Crater. These deposits might provide sustenance to Mars bacteria (and may be a byproduct of their metabolic activity), like their interplanetary alien cousins in Atacama.

As water-loving organisms, humans have traditionally assumed life elsewhere will bare similar traits to life as we know it. But as this study shows, some life on Earth can appear quite alien; the mass extinction event in the high deserts of Chile could teach us about how to (and how not to) seek out microbes on other planets.

Source: Cornell University

Neutron Star Collision Didn’t Create a Black Hole, It Birthed a Hypermassive Neutron Star Baby

base (2)
This artist’s conception portrays two neutron stars at the moment of collision [CfA/Dana Berry]

It has only been a couple of years since the first historic detection of gravitational waves, but now physicists are already dissecting a handful of signals that emanated hundreds of millions of light-years away to elucidate how some of the most violent events in our universe work.

Most of the gravitational wave signals detected so far involve the merger of black holes, but one signal, detected on Aug. 17, 2017, was special—it was caused by the smashup of two neutron stars. This merger also generated a powerful gamma-ray burst (GRB) that was detected at nearly the same time, linking GRBs with neutron star mergers and highlighting where heavy elements in our universe are forged. A new era of “multimessenger astronomy” had begun.

Now, the signal (designated GW170817) has been reanalyzed to understand what happened after the merger. Analysis that came before suggested that the collision of the two neutron stars would have tipped the mass balance to create a black hole. According to a new study, published in the journal Monthly Notices of the Royal Astronomical Society: Letters, two physicists suggest a contradictory scenario: GW170817 didn’t create a black hole, it produced a hypermassive neutron star, instead.

“We’re still very much in the pioneering era of gravitational wave astronomy. So it pays to look at data in detail,” said Maurice van Putten of Sejong University in South Korea. “For us this really paid off, and we’ve been able to confirm that two neutron stars merged to form a larger one.”

gw170817_chirp_annotated
The “chirp” of GW170817’s colliding neutron stars as seen in the LIGO dataset. New research suggests that after the two neutron stars merged, they formed one hypermassive neutron star, not a black hole [LIGO / M.H.P.M van Putten & M. Della Valle]

The secret behind this finding focuses on the datasets recorded by the US-based Laser Interferometer Gravitational-wave Observatory (LIGO) and Italian Virgo observatory. When gravitational waves are recorded during a black hole or neutron star merger event, their frequency rapidly increases (as the objects orbit one another faster and faster as they get closer and closer) and then abruptly cuts off (when they collide). When turned into an audio file, mergers sound like “chirps.” Apart from sounding like an eerie bird call coming from deep space, physicists have been able to extract surprisingly detailed information from the conditions of the merging objects, such as their mass and rates of spin.

And this is where van Putten’s work comes in.

Working with Massimo della Valle of the Osservatorio Astronomico de Capodimonte in Italy, the duo applied a new analysis technique to these data and detected a 5-second descending “chirp” (as shown by the downward arrow in the graph above). This descending chirp happened immediately after the GRB was detected coming from the same location as the gravitational wave signal’s origin. According to their analysis, the spin-down—from 1 KHz to 49 Hz—was most likely representative of a very massive neutron star and not a black hole.

If corroborated, this discovery could have profound implications for astrophysics. How hypermassive neutron stars (like the one that was created by GW170817) can exist without collapsing into a black hole will likely keep theorists busy for some time and physicists will be hopeful for another gravitational wave event like GW170817.

Hitching a Ride on an ‘Evolving Asteroid’ to Travel to the Stars

evolvingaste
The interstellar asteroid spaceship concept that would contain all the resources required to maintain a generations of star travelers (Nils Faber & Angelo Vermeulen)

When ʻOumuamua visited our solar system last year, the world’s collective interest (and imagination) was firing on all cylinders. Despite astronomers’ insistence that asteroids from other star systems likely zip through the solar system all the time (and the reason why we spotted this one is because our survey telescopes are getting better), there was that nagging sci-fi possibility that ʻOumuamua wasn’t a natural event; perhaps it was an interstellar spaceship piloted by (or at least once piloted by) some kind of extraterrestrial — “Rendezvous With Rama“-esque — intelligence. Alas, any evidence for this possibility has not been forthcoming despite the multifaceted observation campaigns that followed the interstellar vagabond’s dazzling discovery.

Still, I ponder that interstellar visitor. It’s not that I think it’s piloted by aliens, though that would be awesome, I’m more interested in the possibilities such objects could provide humanity in the future. But let’s put ʻOumuamua to one side for now and discuss a pretty nifty project that’s currently in the works and how I think it could make use of asteroids from other stars.

Asteroid Starships Ahoy!

As recently announced by the European Space Agency, researchers at Delft University of Technology, Netherlands, are designing a starship. But this isn’t your run-of-the-mill solar sail or “warpship.” The TU Delft Starship Team, or DSTART, aims to bring together many science disciplines to begin the ground-work for constructing an interstellar vehicle hollowed out of an asteroid.

Obviously, this is a long-term goal; humanity is currently having a hard enough time becoming a multiplanetary species, let alone a multistellar species. But from projects like these, new technologies may be developed to solve big problems and those technologies may have novel applications for society today. Central to ESA’s role in the project is an exciting regenerative life-support technology that is inspired by nature, a technology that could reap huge benefits not only for our future hypothetical interstellar space fliers.

Called the MELiSSA (Micro-Ecological Life Support System Alternative) program, scientists are developing a system that mimics aquatic ecosystems on Earth. A MELiSSA pilot plant in Barcelona is capable of keeping rat “crews” alive for months at a time inside an airtight habitat. Inside the habitat is a multi-compartment loop with a “bioreactor” at its core, which consists of algae that produces oxygen (useful for keeping the rats breathing) while scrubbing the air of carbon dioxide (which the rats exhale). The bioreactor was recently tested aboard the International Space Station, demonstrating that the system could be applied to a microgravity environment.

Disclaimer: Space Is Really Big

Assuming that humanity isn’t going to discover faster-than-light (FTL) travel any time soon, we’re pretty much stuck with very pedestrian sub-light-speed travel times to the nearest stars. Even if we assume some sensible iterative developments in propulsion technologies, the most optimistic projections in travel time to the stars is many decades to several centuries. While this is a drag for our biological selves, other research groups have shown that robotic (un-crewed) missions could be done now — after all, Voyager 1 is currently chalking up some mileage in interstellar space and that spacecraft was launched in the 1970’s! But here’s the kicker: Voyager 1 is slow (even if it’s the fastest and only interstellar vehicle humanity has built to date). If Voyager 1 was aimed at our closest star Proxima Centauri (which it’s not), it would take tens of thousands of years to get there.

But say if we could send a faster probe into interstellar space? Projects like Icarus Interstellar and Breakthrough Starshot are approaching this challenge with different solutions, using technology we have today (or technologies that will likely be available pretty soon) to get that travel time down to less than one hundred years.

One… hundred… years.

Sending robots to other stars is hard and it would take generations of scientists to see an interstellar mission through from launch to arrival — which is an interesting situation to ponder. But add human travelers to the mix? The problems just multiplied.

The idea of “worldships” (or generation ships) have been around for many years; basically vast self-sustaining spaceships that allow their passengers to live out their lives and pass on their knowledge (and mission) to the next generation. These ships would have to be massive and contain everything that each generation needs. It’s hard to comprehend what that starship would look like, though DSTART’s concept of hollowing out an asteroid to convert it into an interstellar vehicle doesn’t sound so outlandish. To hollow out an asteroid and bootstrap a self-sustaining society inside, however, is a headache. Granted, DSTART isn’t saying that they are actually going to build this thing (their project website even states: “DSTART is not developing hardware, nor is it building an actual spacecraft”), but they do assume some magic is going to have to happen before it’s even a remote possibility — such as transformative developments in nanotechnology, for example. The life-support system, however, would need to be inspired by nature, so ESA and DSTART scientists are going to continue to help develop this technology for self-sustaining, long-duration missions, though not necessarily for a massive interstellar spaceship.

Hyperbolic Space Rocks, Batman!

Though interesting, my reservation about the whole thing is simple: even if we did build an asteroid spaceship, how the heck would we accelerate the thing? This asteroid would have to be big and probably picked out of the asteroid belt. The energy required to move it would be extreme; to propel it clear of the sun’s gravity (potentially via a series of gravitational assists of other planets) could rip it apart.

So, back to ʻOumuamua.

The reason why astronomers knew ʻOumuamua wasn’t from ’round these parts was that it was moving really, really fast and on a hyperbolic trajectory. It basically barreled into our inner star system, swung off our sun’s gravitational field and slingshotted itself back toward the interstellar abyss. So, could these interstellar asteroids, which astronomers estimate are not uncommon occurrences, be used in the future as vehicles to escape our sun’s gravitational domain?

Assuming a little more science fiction magic, we could have extremely advanced survey telescopes tasked with finding and characterizing hyperbolic asteroids that could spot them coming with years of notice. Then, we could send our wannabe interstellar explorers via rendezvous spacecraft capable of accelerating to great speeds to these asteroids with all the technology they’d need to land on and convert the asteroid into an interstellar spaceship. The momentum that these asteroids would have, because they’re not gravitationally bound to the sun, could be used as the oomph to achieve escape velocity and, once setting up home on the rock, propulsion equipment would be constructed to further accelerate and, perhaps, steer it to a distant target.

If anything, it’s a fun idea for a sci-fi story.

I get really excited about projects like DSTART; they push the limits of human ingenuity and force us to find answers to seemingly insurmountable challenges. Inevitably, these answers can fuel new ideas and inspire younger generations to be bolder and braver. And when these projects start partnering with space agencies to develop existing tech, who knows where they will lead.