Smallest ‘Super-Earth’ Discovered With an Atmosphere — but It’s No Oasis


For the first time, astronomers have detected an atmosphere around a small (and likely) rocky exoplanet orbiting a star only 39 light-years away. Although atmospheres have been detected on larger alien worlds, this is the smallest world to date that has been found sporting atmospheric gases.

Alas, Gliese (GJ) 1132b isn’t a place we’d necessarily call “habitable”; it orbits its red dwarf a little too close to have an atmosphere anything like Earth’s, so you’d have to be very optimistic if you expect to find life (as we know it) camping there. But this is still a huge discovery that is creating a lot of excitement — especially as this exo-atmosphere has apparently evolved intact so close to a star.

The atmosphere was discovered by an international team of astronomers using the 2.2 meter ESO/MPG telescope at La Silla Observatory in Chile. As the exoplanet orbited in front of the star from our perspective (known as a “transit”), the researchers were able to deduce the physical size of the world by the fraction of starlight it blocked. The exoplanet is around 40 percent bigger than Earth (and 60 percent more massive) making it a so-called “super-Earth.”

Through precision observations of the infrared light coming from the exoplanet during the 1.6 day transits, the astronomers noticed that the planet looked larger at certain wavelengths of light than others. In short, this means that the planet has an atmosphere that blocks certain infrared wavelengths, but allows other wavelengths to pass straight through. Researchers of the University of Cambridge and the Max Planck Institute for Astronomy then used this information to model certain chemical compositions, leading to the conclusion that the atmosphere could be a thick with methane or water vapor.

Judging by the exoplanet’s close proximity to its star, this could mean that the planet is a water world, with an extremely dense and steamy atmosphere. But this is just one of the possibilities.

“The presence of the atmosphere is a reason for cautious optimism,” writes a Max Planck Institute for Astronomy news release. “M dwarfs are the most common types of star, and show high levels of activity; for some set-ups, this activity (in the shape of flares and particle streams) can be expected to blow away nearby planets’ atmospheres. GJ 1132b provides a hopeful counterexample of an atmosphere that has endured for billion of years (that is, long enough for us to detect it). Given the great number of M dwarf stars, such atmospheres could mean that the preconditions for life are quite common in the universe.”

To definitively work out what chemicals are in GJ 1132b’s atmosphere, we may not be waiting that long. New techniques for deriving high-resolution spectra of exoplanetary atmospheres are in the works and this exoplanet will be high on the list of priorities in the hunt for extraterrestrial biosignatures. (For more on this, you can check out a recent article I wrote for HowStuffWorks.)

Although we’ll not be taking a vacation to GJ 1132b any time soon, the discovery of an atmosphere around such a small alien world will boost hopes that similar sized super-Earths will also host atmospheres, despite living close to red dwarf stars that are known for their flaring activity. If atmospheres can persist, particularly on exoplanets orbiting within a star’s so-called habitable zone, then there really should be cause for optimism that there really might be an “Earth 2.0” out there orbiting one of the many red dwarfs in our galaxy.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s