The Sun Is a Beautifully Blank Billiard Ball for Halloween

For the festive season, our nearest star is keeping its choice of costume simple.

I’m not saying the Sun isn’t being creative, it’s just not putting too much effort into this year’s stellar fancy dress party. I mean, look at it:

The Sun right now, as seen by the Helioseismic and Magnetic Imager (HMI) instrument on NASA’s Solar Dynamics Observatory (SDO) [NASA/SDO]

That flawless orange billiard ball is the photosphere of our Sun. Have you ever seen something so smooth and beautifully unremarkable?

Well, you have now, and its blank gaze is actually the reason why it’s causing a bit of a stir. According to our ever watchful solar sentry, Tony Phillips at SpaceWeather.com, the northern summer of 2019 may go down in history as “the summer without sunspots.”

From June 21st until Sept 22nd, the sun was blank more than 89% of the time. During the entire season only 6 tiny sunspots briefly appeared, often fading so quickly that readers would complain to Spaceweather.com, “you’ve labeled a sunspot that doesn’t exist!” (No, it just disappeared.) Not a single significant solar flare was detected during this period of extreme quiet.

Dr. Tony Phillips

So, what does this mean?

Sunspots are the visual cues for magnetic turmoil within our nearest star. Over cycles of approximately 11 years, the Sun’s internal magnetic field becomes stretched and twisted, driving the ebb and flow of space weather.

Starting with our solar billiard ball here, suffice to say that the solar magnetic field is pretty untwisted and, well, chilled. This is the epitome of “solar minimum” — and, as commented on by Phillips, a deep, potentially record-breaking solar minimum at that. It’s very likely that this is as minimum as solar minimum can be, so we could hazard a guess to say that things are going to start getting interesting very soon.

Differential rotation and the formation of coronal loops as demonstrated by my awesome abilities as a Microsoft Word artist [source: my PhD thesis!]

As our Sun is a massive blob of magnetized plasma, it doesn’t rotate uniformly (like the Earth does), it actually rotates a little faster at its equator than at its poles, a phenomenon known as “differential rotation.” Now, if you imagine the solar magnetic field as straight lines running from pole to pole, you can imagine that, over time, the field will start to wrap around the equator like an elastic band being stretched out of shape and wrapped around the middle. At its most extreme, so much rotational tension will be applied to the magnetic field that it becomes contorted. This contortion creates an upward pressure, forcing vast loops of magnetized plasma, known as coronal loops, to pop through the Sun’s photosphere — a.k.a. the solar “surface” — like annoyingly twisted loops of garden hosepipe (see the diagram above).

As its most extreme, in a few years time, we can expect our boring ol’ billiard ball to look something like this:

The Sun in 2014 (during the previous solar maximum), as seen by the SDO’s HMI [NASA/SDO]

About those blotches: those dark spots are sunspots and they are a direct consequence of the magnetic turmoil that rumbles inside the Sun during solar maximum. Remember those coronal loops I was talking about? Well, these huge, beautiful arcs of plasma cause the hotter outer layers of the Sun to be pushed aside, exposing the comparatively cooler (though still thousands of degrees) plasma under the surface — that’s what creates those dark blotches. And by counting sunspots, you can gauge how magnetically active the Sun is.

By viewing the Sun in different wavelengths, we can view the Sun’s atmosphere at different temperatures and, as the Sun’s atmosphere (the corona) is counter-intuitively hotter the higher above the surface you get, let’s take a look at what solar maximum looks like above these sunspots:

Yikes! The Sun’s corona in October 2014 (during the previous solar maximum), as seen by the SDO’s Atmospheric Imaging Assembly (AIA) instrument. And a damn fine effort just in time for Halloween. [NASA/SDO]

As you can see, there’s a lot of coronal loops erupting through the surface, creating huge regions of activity (called active regions, unsurprisingly). And the above observation was captured on Oct. 8, 2014, when the Sun was, apparently, in a terrifyingly festive Halloween mood! These regions can be hothouses for solar flares and coronal mass ejections; explosive phenomena that can have dramatic space weather effects on Earth.

So that was solar maximum; what does the solar corona look like now, at solar minimum?

The Sun’s corona right now, as seen by the SDO’s AIA [NASA/SDO]

Yep, as you guessed, very relaxed. In this state, we can expect very little in the way of explosive space weather events, such as flares and CMEs; there’s simply too little magnetic energy at solar minimum to create many surprises (caveat: even solar minimum can generate flares, they’re just few and far between).

While the Sun may look boring, the effects of space weather are anything but. During these times of solar minimum, the extended solar magnetic field (called the heliosphere), a magnetic bubble that reaches beyond the orbits of all the planets, contracts and weakens, allowing more cosmic rays from energetic events from the rest of the cosmos to reach Earth. Cosmic rays are ionizing particles that can boost the radiation exposure of astronauts and frequent fliers. Also, the solar wind can become a more persistent presence; streams of energized particles that are continuously streaming from the lower corona, so we still get our aurorae at high latitudes.

Recognition that the Sun is now in a deep minimum means the solar vacation is nearing an end. Astronomers have reported that of the handful of sunspots have made an appearance over the last few months with a flip in magnetic polarity, which can mean only one thing: Solar Cycle 25 is coming and the next solar maximum is only four years away.

Two Stellar Zombie Spinners Are Ripping Up Spacetime

The pair of white dwarf stars are orbiting one another every seven minutes—and future gravitational wave observatories will be able to detect them whirl.

White dwarf binaries are among some of the most fascinating star systems known, and a newly discovered compact binary, located some 8,000 light-years away in the constellation Boötes, has taken the exotic nature of these systems to new spacetime-warping extremes.

The extremely compact eclipsing binary, called ZTF J1530+5027, is one of the most extreme white dwarf systems known to exist [Caltech/IPAC]

Astronomers using Caltech’s Zwicky Transient Facility (ZTF), a precision sky survey at Palomar Observatory near San Diego in Southern California, made the discovery of ZTF J1530+5027 by detecting the dimming effect caused by one of the stars passing in front of the other. Known as an “eclipsing binary,” the cooler (and therefor dimmer) white dwarf blocks the starlight of the hotter (and brighter) star, causing the ZTF to register a periodic dimming event. This dimming occurs once every seven minutes, meaning they are zipping around each other at speeds of hundreds of miles per second! It is the second fastest white dwarf binary known and the most rapid eclipsing binary discovered in our galaxy. The fortunate alignment allows astronomers to not only precisely measure their orbital speed, they can also gauge the stars’ sizes and masses.

White dwarfs are the stellar corpses of sun-like stars that ran out of fuel long ago. Our sun will become a white dwarf in around five billion years, after it has exhausted its hydrogen fuel that maintains fusion in its core. A short period after, it will swell into a red giant (possibly expanding out as far as Earth, incinerating it) and then lose its plasma to space via powerful solar winds. All that will be left of our once glorious star will be a planetary nebula and a tiny and dense white dwarf, approximately the size of our planet, spinning in the middle. The two white dwarfs in ZTF J1530+5027 likely passed through their red giant phase at different times, but now they’re stuck, in a perpetual death spiral that spells doom for one of the objects.

To fully realize just how crazy-extreme this white dwarf binary is, they are only separated by one-fifth of the distance that the moon orbits Earth, meaning both stars would fully fit inside Saturn. They have a combined mass of our entire sun. As they orbit so snugly, it’s likely that the more massive star will start to tidally drag material from the other, cannibalizing it.

“Matter is getting ready to spill off of the bigger and lighter white dwarf onto the smaller and heavier one, which will eventually completely subsume its lighter companion,” said Kevin Burdge, Caltech graduate student and lead author of a study published in the journal Nature. “We’ve seen many examples of a type of system where one white dwarf has been mostly cannibalized by its companion, but we rarely catch these systems as they are still merging like this one.”

While impressive, the real fireworks are invisible—the stars are ripping up spacetime, generating gravitational waves that are sapping energy from the system, hastening the binary’s ultimate demise. What’s more, astronomers are anticipating that the future Laser Interferometer Space Antenna (LISA), which is scheduled for launch by the European Space Agency in 2034, will be able to detect its gravitational pulse.

“These two white dwarfs are merging because they are emitting gravitational waves,” added collaborator Tom Prince, a senior research scientist at Caltech and NASA’s Jet Propulsion Laboratory (JPL, in Pasadena, Calif. “Within a week of LISA turning on, it should pick up the gravitational waves from this system. LISA will find tens of thousands of binary systems in our galaxy like this one, but so far we only know of a few. And this binary-star system is one of the best characterized yet due to its eclipsing nature.”

This system is expected to keep blinking from our perspective for another hundred thousand years, but how will the system ultimately go kaput? Well, the researchers aren’t entirely certain. On the one hand, the more massive white dwarf may suck the other dry like a vampiric parasite, consuming all of its matter until only one, well-fed star remains. Alternatively, the act of cannibalization may cause the reverse; as mass is transferred to one star, the other may be flung outward to a wider orbit, increasing their orbital period.

“Sometimes these binary white dwarfs merge into one star, and other times the orbit widens as the lighter white dwarf is gradually shredded by the heavier one,” said co-author Jim Fuller, an assistant professor at Caltech. “We’re not sure what will happen in this case, but finding more such systems will tell us how often these stars survive their close encounters.”

One early mystery about this extreme binary is the question of X-rays, or lack thereof. The more massive star is really hot, with a temperature nine times that of the sun (50,000 Kelvin). The researchers believe that this is because it has already begun pulling material from its partner, an act that accelerates and heats the plasma that is being stolen, starting to create an accretion disk. But the accreting gas should be so hot that the system would be humming in X-rays, but it isn’t. “It’s strange that we aren’t seeing X-rays in this system. One possibility is that the accretion spots on the white dwarf—the areas the material is falling on—are bigger than what is typical, and this could result in the emission of ultraviolet light and optical light instead of X-rays,” added Burdge.

[Caltech/IPAC]

It’s exciting to think what the next generation of gravitational wave observatories (particularly LISA that will be sensitive to extremely weak spacetime ripples from systems such as these) combined with traditional (re: electromagnetic) observatories will herald for the future of astronomy. Like the emerging “multi-messenger” era for astronomy that combines observations of the electromagnetic spectrum and gravitational wave signals to confirm short gamma-ray bursts are triggered by neutron star collisions, it’s going to blow our minds when we can access more subtle gravitational wave sources such as these and directly see the gravitational energy leaking from compact binaries.

Psychedelic Simulation Showcases the Ferocious Power of a Solar Flare

Scientists are closing in on a better understanding about how these magnetic eruptions evolve

[Mark Cheung, Lockheed Martin, and Matthias Rempel, NCAR]

For the first time, scientists have created a computer model that can simulate the evolution of a solar flare, from thousands of miles below the photosphere to the eruption itself in the lower corona — the sun’s multimillion degree atmosphere. And the results are not only scientifically impressive, the visualization is gorgeous.

I’ve always had a fascination with the sun — from how our nearest star generates its energy via fusion reactions in its core, to how the tumultuous streams of energetic plasma slams into our planet’s magnetosphere, igniting spectacular aurorae. Much of my interest, however, has focused on the lower corona; a region where the intense magnetic field emerges from the solar interior and reaches into space. With these magnetic fields comes a huge release of hot plasma that is channeled by the magnetism to form beautiful coronal loops. Intense regions of magnetism can accumulate in violently-churning “active regions,” creating sunspots and explosive events — triggered by large-scale magnetic reconnection — such as flares and coronal mass ejections (or CMEs). This is truly a mysterious place and solar physicists have tried to understand its underlying dynamics for decades.

The eruption of an X-class solar flare in the sun’s multimillion degree corona [NASA/SDO]

Now, with increasingly-sophisticated solar observatories (such as NASA’s Solar Dynamics Observatory), we are getting an ever more detailed look at what’s going on inside the sun’s deep atmosphere and, with improvements of theoretical models and increases in computer processing power, simulations of the corona are looking more and more like the real thing. And this simulation, detailed in the journal Nature Astronomyis truly astonishing.

In the research, led by researchers at the National Center for Atmospheric Research (NCAR) and the Lockheed Martin Solar and Astrophysics Laboratory, the evolution of a solar flare has been modeled. This simulation goes beyond previous efforts as it is more realistic and creates a more complete picture of the range of emissions that can be generated when a solar flare is unleashed.

One of the biggest questions hanging over solar (and indeed, stellar) physics is how the sun (and other stars) heat the corona. As we all know, the sun is very hot but its corona is too hot; the photosphere is a few thousand degrees, whereas, only just above it, the coronal plasma skyrockets to millions of degrees, generating powerful radiation beyond what the human eye can see, such as extreme-ultraviolet and X-rays. Basic thermodynamics says that this shouldn’t be possible — this situation is analogous to finding the air surrounding a light bulb is hotter than the bulb’s glass. But what our sun has that a light bulb does not is a powerful magnetic field that dictates the size, shape, temperature and dynamics of the plasma our sun is blasting into space. (If you want some light reading on the subject, you can read my PhD thesis on the topic.)

“This work allows us to provide an explanation for why flares look like the way they do, not just at a single wavelength, but in visible wavelengths, in ultraviolet and extreme ultraviolet wavelengths, and in X-rays. We are explaining the many colors of solar flares.”

Mark Cheung, staff physicist at Lockheed Martin Solar and Astrophysics Laboratory.

The basis of this new simulation, however, investigates another mystery: How and why do solar flares erupt and evolve? It looks like the research team might be on the right track.

When high-energy particles from the sun impact our atmosphere, vast light shows called auroras can be generated during the geomagnetic storm, as shown in this view from the International Space Station [NASA]

Inspired by a powerful flare that was observed in the corona in March 2014, the researchers provided their magnetohydrodynamic model with an approximation of the conditions that were observed at the time. The magnetic conditions surrounding the active region were primed to generate a powerful X-class flare (the most powerful type of solar flare) and several less powerful (but no less significant) M-class flares. So, rather than forcing their simulation to generate flares, they re-enacted the conditions of the sun that were observed and just let their simulation run to create its own flares.

“Our model was able to capture the entire process, from the buildup of energy to emergence at the surface to rising into the corona, energizing the corona, and then getting to the point when the energy is released in a solar flare,” said NCAR scientist Matthias Rempel in a statement. “This was a stand-alone simulation that was inspired by observed data.

“The next step is to directly input observed data into the model and let it drive what’s happening. It’s an important way to validate the model, and the model can also help us better understand what it is we’re observing on the sun.”

Solar flares, CMEs and even the solar wind can have huge impacts on our technological society. The X-rays blasting from the sun’s atmosphere millions of miles away can have dramatic impacts on the Earth’s ionosphere (impacting communications) and can irradiate unprotected astronauts in space, for example. CMEs can be launched from the corona and arrive at Earth orbit in a matter of hours or days, triggering geomagnetic storms that can impact entire power grids. We’re not just talking a few glitches on your cellphone here; satellites can be knocked out, power supplies neutralized and global communications networks interrupted. It’s simulations like these, which aim to get to the bottom of how these solar storms are initiated, that can help us better prepare for our sun’s next big temper tantrum.

For more on this research, watch this video:

This Weird Star System Is Flipping Awesome

The binary system observed by ALMA isn’t wonky, it’s the first example of a polar protoplanetary disk

Artwork of the system HD 98000. This is a binary star comprising two sun-like components, surrounded by a thick disk of material. What’s different about this system is that the plane of the stars’ orbits is inclined at almost 90 degrees to the plane of the disk. Here is a view from the surface of an imagined planet orbiting in the inner edge of the disk [University of Warwick/Mark Garlick].

Some star systems simply don’t like conforming to cosmic norms. Take HD 98000, for example: It’s a binary system consisting of two sun-like stars and it also sports a beautiful protoplanetary disk of gas and dust. So far, so good; sounds pretty “normal” to me. But that’s only part of the story.

When a star is born, it will form a disk of dust and gas — basically the leftovers of the molecular cloud the star itself formed in — creating an environment in which planets can accrete and evolve. Around a single star (like our solar system) the protoplanetary disk is fairly well behaved and will create a relatively flat disk around the star’s spin axis. For the solar system, this flat disk would have formed close to the plane of the ecliptic, an imaginary flat surface that projects out from the sun’s equator where all the planets, more or less, occupy. There are “wonky” exceptions to this rule (as, let’s face it, cosmic rules are there to be broken), but the textbook descriptions of a star system in its infancy will usually include a single star and a flat, boring disk of swirling material primed to build planets.

Cue HD 98000, a star system that has flipped this textbook description on its head, literally. As a binary, this is very different to what we’re used to with our single, lonely star. Binary stars are very common throughout the galaxy, but HD 98000 has a little something extra that made astronomers take special note. As observed by the Atacama Large Millimeter/sub-millimeter Array (ALMA), its protoplanetary disk doesn’t occupy the same plane as the binary orbit; it’s been flipped by 90 degrees over the orbital plane of the binary pair. Although such systems have been long believed to be theoretically possible, this is the first example that has been found.

“Discs rich in gas and dust are seen around nearly all young stars, and we know that at least a third of the ones orbiting single stars form planets,” said Grant M. Kennedy, of the University of Warwick and lead author of the study published today in the journal Nature Astronomy, in a statement. “Some of these planets end up being misaligned with the spin of the star, so we’ve been wondering whether a similar thing might be possible for circumbinary planets. A quirk of the dynamics means that a so-called polar misalignment should be possible, but until now we had no evidence of misaligned discs in which these planets might form.”

Artwork of the system HD 98000. This is a binary star comprising two sun-like components, surrounded by a thick disc of material [University of Warwick/Mark Garlick]

This star system makes for some rather interesting visuals, as shown in the artist’s impression at the top of the page. Should there be a planetary body orbiting the stars on the inner edge of the disk, an observer would be met with a dramatic pillar of gas and dust towering into space with the two stars either side of it in the distance. As they orbit one another, the planetary observer would see them switch positions to either side of the pillar. It goes without saying that any planet orbiting two stars would have very different seasons than Earth. It will even have two different shadows cast across the surface.

“We used to think other solar systems would form just like ours, with the planets all orbiting in the same direction around a single sun,” added co-author Daniel Price of Monash University. “But with the new images we see a swirling disc of gas and dust orbiting around two stars. It was quite surprising to also find that that disc orbits at right angles to the orbit of the two stars.”

Interestingly, the researchers note that there are another two stars orbiting beyond the disk, meaning that our hypothetical observer would have four suns of different brightnesses in the sky.

The most exciting thing to come out of this study, however, is that ALMA has detected signatures that hint at dust growth in the disk, meaning that material is in the process of clumping together. Planetary formation theories suggest that accreting dust will go on to form small asteroids and planetoids, creating a fertile enviornment in which planets can evolve.

“We take this to mean planet formation can at least get started in these polar circumbinary discs,” said Kennedy. “If the rest of the planet formation process can happen, there might be a whole population of misaligned circumbinary planets that we have yet to discover, and things like weird seasonal variations to consider.”

What was that I was saying about “cosmic norms”? When it comes to star system formation, there doesn’t appear to be any.

Reference: https://warwick.ac.uk/newsandevents/pressreleases/double_star_system
Paper:
https://www.nature.com/articles/s41550-018-0667-x

How Is Stardust Created? #TRIUMFology

I worked on TRIUMF’s Five-Year Plan (2020-2025) last year, so Astroengine is featuring a few physicsy articles that were included in the document to tell the center’s story

When (neutron) stars collide… [NASA/CXC/M.WEISS]

Last year, I had the honor to help write TRIUMF’s Five-Year Plan for 2020-2025. TRIUMF is Canada’s particle accelerator center, located next to the University of British Columbia’s campus in Vancouver, and it tackles some of the biggest problems facing physics today.

Every five years, research facilities in Canada prepare comprehensive documents outlining their strategies for the next five. In this case, TRIUMF asked me to join their writer team and I was specifically tasked with collaborating with TRIUMF’s management to develop and write the Implementation Plan (PDF) — basically an expanded version of the Strategic Plan (PDF) — detailing the key initiatives the center will carry out between 2020 and 2025.

As the location of the world’s largest and oldest operational cyclotron, the center is a multi-faceted physics lab with hundreds of scientists and engineers working on everything from understanding the origins of matter to developing radiopharmaceuticals to treat late-stage cancers. I only had a vague understanding about the scope of TRIUMF’s work before last year, but, as the months progressed after visiting the center in April 2018, I was treated to an unparalleled learning experience that was as dizzying as it was rewarding.

As a science communicator, I wanted to understand what makes TRIUMF “tick,” so I decided to speak to as many TRIUMF scientists, engineers, collaborators, and managers as possible. During my interviews, I was excited and humbled to hear stories of science breakthroughs, personal achievements and mind-bending physics concepts, so I included a series of miniature articles to complement the Implementation Plan’s text. As the Five-Year Plan is a public document (you can download the whole Plan here, in English and French), I’ve been given permission by TRIUMF to re-publish these articles on Astroengine.

“Beyond Multimessenger Astronomy”

Background: To kick off the series, we’ll begin with nuclear science. Specifically, how astrophysical processes create heavy elements and how TRIUMF studies the formation of radioisotopes in the wake of neutron star collisions.

After the 2017 LIGO detection of gravitational waves caused by the collision of two neutron stars (get the details here), and the near-simultaneous detection of a gamma-ray burst from the same location, scientists heralded a new era for astronomy — nicknamed “multimessenger astronomy,” where gravitational wave and electromagnetic signals measured at the same time from the same event can create a new understanding of astrophysical processes. In this case, as it was confirmed to be a neutron star merger — an event that is theorized to generate r-process elements — spectroscopic analysis of the GRB’s afterglow confirmed that, yes, neutron star collisions do indeed create the neutron-rich breeding ground for heavy elements (like gold and platinum). Although multimessenger astronomy may be a new thing, TRIUMF has been testing these theories in the laboratory environment for years, using rare isotope beams colliding into targets that mimic the nuclear processes that produce the heavy elements in our universe. This process is known as nucleogenesis, and it’s how our cosmos forges the elements that underpin stardust, the stuff that makes the planets, stars, and the building blocks of life.

For this mini-article, I had a fascinating chat with Dr. Iris Dillmann, a nuclear physics research scientist at TRIUMF. I’ve lightly edited the text for context and clarity. The original article can be found on page 22 of the Implementation Plan (PDF).

The GRIFFIN experiment is part of the ISAC facility that uses rare-isotope beams to carry out physics experiments [TRIUMF]

The article: TRIUMF’s investigations into neutron-rich isotopes were well-established before the advent of multi-messenger astronomy. “It was a cherry on top of the cake to get this confirmation, but the experimental program was already going on,” said Dillmann.

“What we do is multi-messenger nuclear physics; we are not looking directly into stars. TRIUMF is doing experiments here on Earth.”

Whereas the combination of gravitational waves and electromagnetic radiation from astrophysical events gives rise to a new era of multi-messenger astronomy, TRIUMF’s Isotope Separator and Accelerator (ISAC) facilitates the investigation of heavy isotopes through an array of nuclear physics experiments all under one roof that can illuminate the characteristics of isotopes that have been identified in neutron star mergers.

“For example, astronomers can identify one interesting isotope and realize that they need more experimental information on that one isotope,” she said. “We then have the capability to go through the different setups and, say, measure the mass of the isotope with the TRIUMF Ion Trap for Atomic and Nuclear Science (TITAN) experiment’s Penning trap.”

From there, Dillmann added, the Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) experiment can use decay spectroscopy to investigate the half-lives of rare isotope beams and their underlying nuclear structure. Other nuclear properties such as moments and charge radii can be measured using laser spectroscopy. TRIUMF scientists can also directly measure the reaction cross-sections of explosive hydrogen and helium burning in star explosions with the Detector of Recoils And Gammas Of Nuclear reactions experiment (DRAGON) and the TRIUMF UK Detector Array (TUDA).

With ISAC, all these measurements are carried out in one place, where teams from each experiment work side by side to solve problems quickly and collaborate effectively. “We have the setups in the hall to investigate an isotope from different perspectives to try to get a complete picture just from one department — the nuclear physics department,” said Dillmann.

*****

Why “TRIUMFology”?

…because I have a “PhD” in TRIUMFology! Not sure if I can include it in my resume, but I love the honor all the same. Thanks Team TRIUMF!

Wonky Star Systems May Be Born That Way

A nearby baby star has been discovered with a warped protoplanetary disk — a feature that may reveal the true nature of the solar system’s planetary misalignments

[RIKEN]

Textbook descriptions of our solar system often give the impression that all the planets orbit the sun in well-behaved near-circular orbits. Sure, there’s a few anomalies, but, in general, we’re led to believe that everything in our interplanetary neighborhood travels around the sun around a flat orbital plane. This, however, isn’t exactly accurate.

Pluto, for example, has an orbit around the sun that is tilted by over 17 degrees out of the plane of the ecliptic (an imaginary flat plane around which the Earth orbits the sun). Mercury has an inclination of seven degrees. Even Venus likes to misbehave and has an orbital inclination of over three degrees. If all the material that built the planets originated from the same protoplanetary disk that was — as all the artist’s impressions would have us believe — flat, what knocked all the planet’s out of alignment with the ecliptic?

Until now, it was assumed that, during the early epoch of our solar system’s planet-forming days, dynamic chaos ruled. Planets jostled for gravitational dominance, Jupiter bullied smaller worlds into other orbits (possibly chucking one or two unfortunates into deep space), and gravitational instabilities threw the rest into disorderly orbital paths. Other star systems also exhibit this orbital disorder, so perhaps it’s just an orbital consequence of a star system’s growing pains.

But there might be another contribution to the chaos: perhaps wonky star systems were just born that way.

Cue a recent observation campaign of the nearby baby star L1527. Located 450 light-years away in the direction of the Taurus Molecular Cloud, L1527 is a protostar embedded in a thick protoplanetry disk. Using the Atacama Large Millimeter/submillimeter Array (ALMA), in Chile, astronomers of the RIKEN Cluster for Pioneering Research (CPR) and Chiba University in Japan discovered that the L1527 disk is actually two disks morphed into one — both of which are out of alignment with one another. Imagine a vinyl record that has been left on a heater and you wouldn’t be far off visualizing what this baby star system looks like.

The RIKEN study, published on Jan. 1 in Nature, suggests that this warping may have been caused by jets of material emanating from the star’s birth, kicking planet-forming material into this warped configuration and, should this configuration remain stable, could result in planets with orbital planes that are significantly out of alignment.

“This observation shows that it is conceivable that the misalignment of planetary orbits can be caused by a warp structure formed in the earliest stages of planetary formation,” said team leader Nami Sakai in a RIKEN press release. “We will have to investigate more systems to find out if this is a common phenomenon or not.”

It’s interesting to think that if this protoplanetary disk warping is due to the mechanics behind the formation of the star itself, we might be able to look at mature star systems to see the ancient fingerprint of a star’s earliest outbursts or, possibly, its initial magnetic environment.

It’s possible “that irregularities in the flow of gas and dust in the protostellar cloud are still preserved and manifest themselves as the warped disk,” added Sakai. “A second possibility is that the magnetic field of the protostar is in a different plane from the rotational plane of the disk, and that the inner disk is being pulled into a different plane from the rest of the disk by the magnetic field.”

Though orbital chaos undoubtedly contributed to how our solar system looks today, with help of this research, we may be also getting a glimpse of how warped our sun’s protoplanetry disk may have been before the planets even formed.

How Gravitational Waves Led Us to Neutron Star Gold

grav-neutron-stars
Artist impression of a violent neutron star collision (Dana Berry, SkyWorks Digital, Inc.)

One hundred and thirty million years ago in a galaxy 130 million light-years away, two neutron stars met their fate, merging as one. Trapped in a gravitational embrace, these two stellar husks spiraled closer and closer until they violently ripped into one another, causing a detonation that reverberated throughout the cosmos.

On August 17, the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO) and Italian Virgo gravitational wave detector felt the faint ripples in spacetime from that ancient neutron star collision washing through our planet. Until now, LIGO and Virgo have only confirmed the collisions and mergers of black holes, so the fact that a nearby (a relative term in this case) neutron star merger had been detected was already historic.

But the implications for this particular neutron star signal, which is comparatively weak in comparison with the black hole mergers that have come before it, are so profound that I’ve been finding it hard to put this grand discovery into words (though I have tried).

Why It Matters

With regards to gravitational waves, I feel I’ve described each gravitational wave discovery as “historic” and “a new era for astronomy” since their first detection on Sept. 15, 2015, but the detection of GW170817 may well trump all that have come before it, even though the signal was generated by neutron stars and not black hole heavyweights.

The thing with black holes is that when they collide and merge, they don’t necessarily produce electromagnetic radiation (i.e. visible light, X-rays or infrared radiation). They can go “bump” in the cosmic night and no intelligent being with a conventional telescope would see it happen. But in the the gravitational domain, black hole mergers echo throughout the universe; their gravitational waves travel at the speed of light, warping spacetime as they propagate. To detect these “invisible” waves, we must build instruments that can “see” the infinitesimal wobbles in the fabric of spacetime itself, and this is where laser interferometry comes in.

Very precise lasers are fired down miles-long tunnels in “L” shaped buildings in the two LIGO detectors (in Washington and Louisiana) and the Virgo detector near Pisa. When gravitational waves travel through us, these laser interferometers can measure the tiny spacetime warps. The more detectors measuring the same signal means a more precise observation and scientists can then work out where (and when) the black hole merger occurred.

There are many more details that can be gleaned from the gravitational wave signal from black hole mergers, of course — including the progenitor black holes’ masses, the merged mass, black hole spin etc. — but for the most part, black hole mergers are purely a gravitational affair.

Neutron stars, however, are a different beast and, on Aug. 17, it wasn’t only gravitational wave detectors that measured a signal from 130 million light-years away; space telescopes on the lookout for gamma-ray bursts (GRBs) also detected a powerful burst of electromagnetic radiation in the galaxy of NGC 4993, thereby pinpointing the single event that generated the gravitational waves and the GRB.

And this is the “holy shit” moment.

As Caltech’s David H. Reitze puts it: “This detection opens the window of a long-awaited ‘multi-messenger’ astronomy.”

What Reitze is referring to is that, for the first time, both gravitational waves and electromagnetic waves (across the EM spectrum) have been observed coming from the same astrophysical event. The gravitational waves arrived at Earth slightly before the GRB was detected by NASA’s Fermi and ESA’s INTEGRAL space telescopes. Both space observatories recorded a short gamma-ray burst, a type of high-energy burst that was theorized (before Aug. 17) to be produced by colliding neutron stars.

Mass_plot_black_no_gap
The growing family of merging black holes and neutron stars observed with gravitational waves (LIGO-Virgo/Frank Elavsky/Northwestern University)

Now scientists have observational evidence that these types of GRBs are produced by colliding neutron stars as the gravitational wave fingerprint unquestionably demonstrates the in-spiraling and merger of two neutron stars. This is a perfect demonstration of multi-messenger astronomy; where an energetic event can be observed simultaneously in EM and gravitational waves to reveal untold mysteries of the universe’s most energetic events.

Another Nod to Einstein

The fact that the gravitational waves and gamma-rays arrived at approximately the same time is yet another nod to Einstein’s general relativity. The century-old theory predicts that gravitational waves should travel at the speed of light and, via this brand spanking new way of doing multi-messenger astronomy, physicists and astronomers have again bolstered relativity with observational evidence.

But why did the gravitational waves arrive slightly before the GRB? Well, NASA’s Fermi team explains: “Fermi’s [Gamma-ray Burst Monitor instrument] saw the gamma-ray burst after the [gravitational wave] detection because the merger happened before the explosion,” they said in a tweet.

In other words, when the two neutron stars collided and merged, the event immediately dissipated energy as gravitational waves that were launched through spacetime at the speed of light — that’s the source of GW170817 — but the GRB was generated shortly after.

Enter the Kilonova

As the neutron stars smashed together, huge quantities of neutron star matter were inevitably blasted into space, creating a superheated, dense volume of free neutrons. Neutrons are subatomic particles that form the building blocks of atoms and if the conditions are right, the neutron star debris will undergo rapid neutron capture process (known as “r-process”) where neutrons combine with one another faster than the newly-formed radioactive particles can decay. This mechanism is responsible for synthesizing elements heavier than iron (elements lighter than iron are formed through stellar nucleosynthesis in the cores of stars).

kilonova
Artist impression of colliding neutron stars generating gravitational waves and a “kilonova” (NSF/LIGO/Sonoma State University/A. Simonnet)

For decades astronomers have been searching for observational evidence of the r-process in action and now they have it. Soon after the merger, massive amounts of debris erupted in a frenzy of heavy element creation, triggering an energetic eruption known as a “kilonova” that was seen as a short GRB. The GRB was cataloged as “SSS17a.”

The Golden Ticket

Follow-up observations by the Hubble Space Telescope, Gemini Observatory and the ESO’s Very Large Telescope have all detected spectroscopic signatures in the afterglow consistent with the r-process taking place at the site of the kilonova, meaning heavy elements are being formed and, yes, it’s a goldmine. As in: there’s newly-synthesized gold there. And platinum. And all the other elements heavier than iron that aren’t quite so sexy.

And there’s lots of it. Researchers estimate that that single neutron star collision produced hundreds of Earth-masses of gold and platinum and they think that neutron star mergers could be the energetic process that seed the galaxies with heavy elements (with supernovas coming second).

So, yeah, it’s a big, big, BIG discovery that will reverberate for the decades to come.

The best thing is that we now know that our current generation of advanced gravitational wave detectors are sensitive enough to not only detect black holes merging billions of light-years away, but also detect the nearby neutron stars that are busy merging and producing gold. As more detectors are added and as the technology and techniques mature, we’ll be inundated with merging events big and small, each one teaching us something new about our universe.

Primordial Black Holes Might be Cosmic Gold Diggers

black-hole-gold
Neutron stars might have black hole parasites in their cores (NASA’s Goddard Space Flight Center)

When the universe’s first black holes appeared is one of the biggest mysteries in astrophysics. Were they born immediately after the Big Bang 13.8 billion years ago? Or did they pop into existence after the first population of massive stars exploded as supernovas millions of years later?

The origin of primordial black holes isn’t a trivial matter. In our modern universe, the majority of galaxies have supermassive black holes in their cores and we’re having a hard time explaining how they came to be the monsters they are today. For them to grow so big, there must have been a lot of primordial black holes formed early in the universe’s history clumping together to form progressively more massive black holes.

Now, in a new study published in Physical Review Letters, Alexander Kusenko and Eric Cotner, who both work at the University of California, Los Angeles (UCLA), have arrived at an elegant theory as to how the early universe birthed black holes.

Primordial beginnings

Immediately after the Big Bang, the researchers suggest that a uniform energy field pervaded our baby universe. In all the superheated chaos, long before stars started to form, this energy field condensed as “Q balls” and clumped together. These clumps of quasi-matter collapsed under gravity and the first black holes came to be.

These primordial black holes have been singled out as possible dark matter candidates (classed as massive astrophysical compact halo objects, or “MACHOs”) and they may have coalesced to quickly seed the supermassive black holes. In short: if these things exist, they could explain a few universal mysteries.

But in a second Physical Review Letters study, Kusenko teamed up with Volodymyr Takhistov (also from UCLA) and George Fuller, at UC San Diego, to investigate how these primordial black holes may have triggered the formation of heavy elements such as gold, platinum and uranium — through a process known as r-process (a.k.a. rapid neutron capture process) nucleosynthesis.

It is thought that energetic events in the universe are responsible for the creation for approximately half of elements heavier than iron. Elements lighter than iron (except for hydrogen, helium and lithium) were formed by nuclear fusion inside the cores of stars. But the heavier elements formed via r-process nucleosynthesis are thought to have been sourced via supernova explosions and neutron star collisions. Basically, the neutron-rich debris left behind by these energetic events seeded regions where neutrons could readily fuse, creating heavy elements.

These mechanisms for heavy element production are far from being proven, however.

“Scientists know that these heavy elements exist, but they’re not sure where these elements are being formed,” Kusenko said in a statement. “This has been really embarrassing.”

A cosmic goldmine

So what have primordial black holes got to do with nucleosynthesis?

If we assume the universe is still populated with these ancient black holes, they may collide with spinning neutron stars. When this happens, the researchers suggest that the black holes will drop into the cores of the neutron stars.

Alexander+Kusenko+2017+image_thmb
Alexander Kusenko/UCLA

Like a parasite eating its host from the inside, material from the neutron star will be consumed by the black hole in its core, causing the neutron star to shrink. As it loses mass, the neutron star will spin faster, causing neutron-rich debris to fling off into space, facilitating (you guessed it) r-process nucleosynthesis, creating the heavy elements we know and love — like gold. The whole process is expected to take about 10,000 years before the neutron star is no more.

So, where are they?

There’s little evidence that primordial black holes exist, so the researchers suggest further astronomical work to study the light of distant stars that may flicker by the passage of invisible foreground black holes. The black holes’ gravitational fields will warp spacetime, causing the starlight to dim and brighten.

It’s certainly a neat theory to think that ancient black holes are diving inside neutron stars to spin them up and create gold in the process, but now astronomers need to prove that primordial black holes are out there, possibly contributing to the dark matter budget of our universe.

Sorry, Proxima Centauri Is Probably a Hellhole, Too

proximab
The surface of Proxima b as imagined in this artist’s impression. Sadly, the reality probably doesn’t include an atmosphere (ESO/M. Kornmesser)

The funny thing about habitable zones is that they’re not necessarily habitable. In fact, depending on the star, some of them are likely downright horrible.

Take, for example, the “habitable zone exoplanet” orbiting our neighboring star Proxima Centauri. When the discovery of Proxima b was announced last year, the world erupted with excitement. After all, astronomers had detected an Earth-sized world right on our galactic doorstep, a mere four light-years away.

Immediately there was discussion about Proxima b’s habitable potential (could there be aliens?) and the possibility of the world becoming an interstellar target (might we one day go there on vacation?).

Alas, for the moment, these exo-dreams are pure fantasy as the only things we know about this world are its mass and its orbital period around the star. We have no clue about the composition of this exoplanet’s atmosphere — or even if it has an atmosphere at all. And, according to new research published in The Astrophysical Journal Letters, Proxima b would probably be a very unlikely place to find extraterrestrial life and you’d be ill advised to invest in a vacation home there.

Like TRAPPIST-1 — that other star system that contains “habitable, but probably not so habitable” exoplanets — Proxima Centauri is a red dwarf star. By their nature, red dwarfs are small and cooler than our sun. Their habitable zones are therefore very compact; to receive enough heating energy to keep water in a liquid state on their surfaces, any “habitable” red dwarf exoplanets would need to snuggle up really close to their star. Liquid water (as we all know) is essential for life. So, if you want to find life as we know it (not that weird Titan life), studying habitable zone planets would be a good place to start. And as red dwarfs are abundant in our galaxy, seeking out habitable zone planets in red dwarf star systems would, at first, seem like an even better place to start.

Except, probably not.

Red dwarfs are angry. They erupt with powerful flares, have powerful stellar winds and their habitable zones are awash with intense ultraviolet radiation. And, like TRAPPIST-1, Proxima Centauri probably wouldn’t be a great place to live.

But the researchers decided to test this hypothesis by throwing Earth in at the deep end.

“We decided to take the only habitable planet we know of so far — Earth — and put it where Proxima b is,” said Katherine Garcia-Sage, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md., and lead author of the study.

The big advantage for Earth is that it possesses a powerful global magnetic field that can deflect our sun’s solar wind and coronal mass ejections with a minimum of effort. But put Earth in a habitable zone orbit around Proxima Centauri and bad stuff starts to happen, fast.

At this location, the intensity of extreme ultraviolet radiation becomes a problem. Using data from NASA’s Chandra X-ray Observatory, the researchers could gauge the star’s activity and how much radiation would hit Proxima b. According to their calculations, the exoplanet receives hundreds of times more extreme ultraviolet radiation than Earth receives from our sun and, even if we assume Proxima b has an “Earth-like” magnetosphere, it will lose its atmosphere very quickly.

As ultraviolet radiation will ionize the exoplanet’s atmosphere, electrons (that are negatively charged) will be readily stripped from light atoms (hydrogen) and eventually the heavier atoms too (like oxygen and nitrogen). As the electrons are lost to space, a powerful “charge separation” is created and the positively charged ions that are left behind in the atmosphere will be dragged with the electrons, causing them to also be lost to space. Granted, the global magnetic field will have an effect on the rate of atmosphere loss, but the researchers estimate that this process will drain an atmosphere from Proxima b 10,000 times faster than what happens on Earth.

“This was a simple calculation based on average activity from the host star,” added Garcia-Sage. “It doesn’t consider variations like extreme heating in the star’s atmosphere or violent stellar disturbances to the exoplanet’s magnetic field — things we’d expect provide even more ionizing radiation and atmospheric escape.”

In the worst-case scenario, where the outer atmospheric temperatures are highest and the planet exhibits an “open” field line configuration, Proxima b would lose the equivalent of the whole of Earth’s atmosphere in just 100 million years. If the atmospheric temperatures are cool and a “closed” magnetic field line configuration is assumed, it will take 2 billion years for the atmosphere to be completely lost to space. Either way you look at it, unless the atmosphere is being continuously replaced (perhaps by very active volcanism), Proxima b will have very little chance to see life evolve.

“Things can get interesting if an exoplanet holds on to its atmosphere, but Proxima b’s atmospheric loss rates here are so high that habitability is implausible,” said Jeremy Drake, of the Harvard-Smithsonian Center for Astrophysics and study co-author. “This questions the habitability of planets around such red dwarfs in general.”

TRAPPIST-1: The ‘Habitable’ Star System That’s Probably a Hellhole

trappist-1-star
Red dwarfs can be angry little stars (NASA/GSFC/S. Wiessinger)

There are few places that elicit such vivid thoughts of exotic habitable exoplanets than TRAPPIST-1 — a star system located less than 40 light-years from Earth. Alas, according to two recent studies, the planetary system surrounding the tiny red dwarf star may actually be horrible.

For anyone who knows a thing or two about red dwarfs, this may not come as a surprise. Although they are much smaller than our sun, red dwarfs can pack a powerful space weather punch for any world that orbits too close. And, by their nature, any habitable zone surrounding a red dwarf would have to be really compact, a small detail that would bury any “habitable” exoplanet in a terrible onslaught of ultraviolet radiation and a blowtorch of stellar winds. These factors would make the space weather environment around TRAPPIST-1 extreme to say the least.

“The concept of a habitable zone is based on planets being in orbits where liquid water could exist,” said Manasvi Lingam, a Harvard University researcher who led a Center for Astrophysics (CfA) study, published in the International Journal of Astrobiology. “This is only one factor, however, in determining whether a planet is hospitable for life.”

The habitable zone around any star is the distance at which a small rocky world can orbit and receive just the right amount of heating to maintain liquid water on its hypothetical surface. Orbit too close and the water vaporizes; too far and it freezes. As life needs liquid water to evolve, seeking out exoplanets in their star’s habitable zone is a good place to start.

trappist-1-planet
The peaceful surface of a TRAPPIST-1 habitable zone exoplanet as imagined in this artist’s rendering (NASA/JPL-Caltech)

For the sun-Earth system, we live in the middle of the habitable zone, at a distance of one astronomical unit (1 AU). For a world orbiting a red dwarf like TRAPPIST-1, its orbital distance would be a fraction of that — i.e. three worlds orbit TRAPPIST-1 in the star’s habitable zone at between 2.8% and 4.5% the distance the Earth orbits the sun. This is because red dwarfs are very dim and produce meager heating — for a world to receive the same degree of heating that our planet enjoys, a red dwarf world would need to snuggle up really close to its star.

But just because TRAPPIST-1 is dim, it doesn’t mean it holds back on ultraviolet radiation. And, according to this study, the three “habitable” exoplanets in the TRAPPIST-1 system are likely anything but — they would receive disproportionate quantities of damaging ultraviolet radiation.

“Because of the onslaught by the star’s radiation, our results suggest the atmosphere on planets in the TRAPPIST-1 system would largely be destroyed,” said co-author Avi Loeb, who also works at Harvard. “This would hurt the chances of life forming or persisting.”

Life as we know it needs an atmosphere, so the erosion by UV radiation seems like a significant downer for the possible evolution of complex life.

That’s not the only bad news for our extraterrestrial life dreams around TRAPPIST-1, however. Another study carried out by the CfA and the University of Massachusetts in Lowell (and published in The Astrophysical Journal Letters) found more problems. Like the sun, TRAPPIST-1 generates stellar winds that blast energetic particles into space. As these worlds orbit the star so close, they would be sitting right next to the proverbial nozzle of a stellar blowtorch — models suggest they experience 1,000 to 100,000 times stellar wind pressure than the solar wind exerts on Earth.

And, again, that’s not good news if a planet wants to hold onto its atmosphere.

“The Earth’s magnetic field acts like a shield against the potentially damaging effects of the solar wind,” said Cecilia Garraffo of the CfA and study lead. “If Earth were much closer to the sun and subjected to the onslaught of particles like the TRAPPIST-1 star delivers, our planetary shield would fail pretty quickly.”

trappist-1-system
The TRAPPIST-1 exoplanet family. TRAPPIST-1 e, f and g are located in the system’s habitable zone (NASA/JPL-Caltech)

So it looks like TRAPPIST-1 e, f and g really take a pounding from their angry little star, but the researchers point out that it doesn’t mean we should forget red dwarfs as potential life-giving places. It’s just that life would have many more challenges to endure than we do on our comparatively peaceful place in the galaxy.

“We’re definitely not saying people should give up searching for life around red dwarf stars,” said co-author Jeremy Drake, also from CfA. “But our work and the work of our colleagues shows we should also target as many stars as possible that are more like the sun.”