Triton’s Ice Won’t Mix

Triton_sm

Triton, Neptune’s largest moon, hasn’t been studied in detail since Voyager 2 did a flyby in 1989. That was until a team headed by Will Grundy, a Lowell Observatory planetary scientist, did a 10-year study into the distribution of the moon’s ices.

Soon to be published in the journal Icarus, the team has found that concentrations of nitrogen and carbon monoxide mix together and form a covering of ice on the Neptune-facing side of Triton. This is in contrast to the methane content of the atmosphere. For some reason, methane is concentrated on the non-facing Neptune hemisphere of the moon. It appears that methane doesn’t like to mix with the other volatile ices.

This is in stark contrast to the non-volatile ices, such as water and carbon dioxide. Both appear to have a homogeneous distribution, regardless of phase or geographical location.

These are incredible observations of a moon that was once a Kuiper Belt Object. However, the infrared analysis carried out on Triton could be a test-run before observations are carried out on other, more exotic, targets.

This type of long-term, detailed analysis would be equally valuable for small icy planets like Pluto, Eris, and Makemake, all of which are similar to Triton in having volatile ices like methane and nitrogen on their surfaces,” said Grundy. “We have been monitoring Pluto’s spectrum in parallel with that of Triton, but Eris and Makemake are quite a bit fainter. It is hard to get time on large telescopes to monitor them year after year. We expect that Lowell Observatory’s Discovery Channel Telescope will play a valuable role in this type of research when it comes on line.”

Source: Space Disco, Discovery Channel (yeah, I’m referencing myself), Lowell Observatory

Strangest Kuiper Belt Objects: The Top Five

From Pluto, looking at its icy moons in the Kuiper belt (NASA)

The Kuiper belt is strange. Most of this strangeness probably comes from the fact that we are only just beginning to uncover this mysterious region of the Solar System. Unlike the Oort Cloud which (possibly) lies beyond 3 × 1012 km away (over 20,000 AU, or a whopping 0.3 light years), we can actually observe the objects inside the Kuiper belt as, compared to the Oort Cloud, the Kuiper belt is on our interplanetary doorstep.

But that doesn’t mean it’s close. The Kuiper belt exists in a region of space 30–55 AU from the Sun; this is where Pluto lives (as Pluto itself is a “Kuiper belt object”, or KBO). As astronomical techniques become more advanced however, we are able to discover more KBOs in the zoo of icy-rocky bodies that live in this region.

Having just written about an oddball pair of “highly split” KBOs, I feel compelled to list my top five favourite KBOs. Here are my favourites, as some are really funny-lookin’ and others have some serious personal issues…
Continue reading “Strangest Kuiper Belt Objects: The Top Five”