What Might We Name the First Mars Microbes?

I, for one, welcome our new Mars desert-dwelling overlords.

Just some random (terrestrial) microbes doing microbial things [MSU]

It’s a question I’ve been pondering for some time: if we discover microbes eking out an existence on Mars, what might they be called? At first, I presumed it would be a variation on how we designate microbial names on Earth. Something like Staphylococcus aureus but swap out the “aureus” for “ares” (Greek for “Mars”, the god of war) or … something.

As you can see, biology isn’t my strong suit and butchering Latin and Greek is all in a day’s work. So, feeling out of my depth, I decided to leave that thought alone and file the idea under “Interesting, But Needs More Research.” That’s where the topic stayed for a while; I wanted to wait for a related piece of science to appear in a journal that could be a catalyst for my question. And last week, that research surfaced. I saw my opportunity.

Searching for Martians on Earth

The Atacama Desert is an amazing place. Having visited the ESO’s Paranal Observatory and the Atacama Large Millimeter/submillimeter Array in 2016 as a lucky member of the #MeetESO team, I have first-hand experience of that extreme and breathtaking region. While driving between sites, we’d often go for hours without seeing any vegetation or life of any kind. Atacama is the driest place on Earth; its salty, parched soil is bombarded by ultraviolet radiation, and the core of the desert doesn’t receive rain for decades. But just because life isn’t obvious in the arid ‘scapes, that doesn’t mean it’s not there.

The flora and fauna that does call Atacama their home are very specialized in finding ways to thrive. On the smallest life scales, for some microbes that means living underground, which makes them very interesting organisms indeed.

In a new study, published in Frontiers in Microbiology, the results of a mock-Mars-life-hunting rover campaign in the Atacama Desert’s core have been revealed.

The research was driven, in part, to develop techniques for robotic missions to the Red Planet that will seek out alien bacteria that may be holed up in an underground colony. Remember, Mars has the same land area as Earth, so there’s a lot of real estate to search for microscopic lifeforms. Sure, scientists are smart and can narrow down potentially-habitable regions that they can drop a life-seeking robot on, but once landed on that toxic soil, what kind of methodology should they use to look for these hypothetical bacteria? The Atacama Desert makes for a decent analog of Mars; it’s very dry and its soil is laced with toxic perchlorate salts, so if microbes on Mars bear any resemblance to the nature of microbes in the Atacama, scientists can take a stab at predicting their behavior and guide their Mars rovers to the most likely places where they might be hiding.

Researchers already know that bacterial life occupies even the harshest Atacama regions, but according to team leader Stephen Pointing, a professor at Yale-NUS College in Singapore, the microbes we are familiar with are common species that live on the surface, using sunlight for energy. But Pointing isn’t so interested in what’s on the surface; his rover is fitted with a drill and extraction system that can take samples of soil from underground. During the campaign, Pointing’s team made some compelling discoveries.

“We saw that with increasing depth the bacterial community became dominated by bacteria that can thrive in the extremely salty and alkaline soils,” he told me. “They in turn were replaced at depths down to 80 centimeters by a single specific group of bacteria that survive by metabolizing methane.”

Methane. Huh. That’s interesting.

These subsurface microbes are known to science — they have been found in deep mine shafts and other subterranean environments — but they’ve never been found living under the surface of the world’s most arid region. They’ve also fine-tuned their evolution to specifically adapt to this harsh environment. “The communities of bacteria that we discovered were remarkably lacking in complexity, and this likely reflects the extreme stress under which they develop,” said Pointing.

The biggest discovery made during this research was that the subsurface colonies of bacteria were very patchy, said Pointing, a factor that will have ramifications for the search for their Martian cousins. “The patchy nature of the colonization suggest that a rover would be faced with a ‘needle in a haystack’ scenario in the search for Martian bacteria,” he said.

Desert Planet Survivor

This research is a fascinating glimpse into how Earth-based environments are being used to better understand how alien bacteria may evolve in their native environments. But the desert-thriving, methane-munching bacteria of the Atacama may also inspire their name — should they be discovered one day.

Pointing explained: “The way we assign Latin names to bacteria is based on their evolutionary relationship to each other and we measure this using their genetic code. The naming of Martian bacteria would require a completely new set of Latin names at the highest level if Martian bacteria were a completely separate evolutionary lineage — that is they evolved from a different common ancestor to Earth bacteria in a “second genesis” event [and not related to Earth life via panspermia]. If we find truly “native” Martian bacteria I would love to name one, and call it Planeta-desertum superstes, which translates in Latin to ‘survivor on the desert planet.'”

So there we have it, an answer to my question about what our Martian neighbors might be called, if we find them: Planeta-desertum superstes, the desert planet survivor.

Read more about Pointing’s research in my HowStuffWorks article “Hunting for Martians in the Most Extreme Desert on Earth

One thought on “What Might We Name the First Mars Microbes?”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s