This Is NASA’s Future Mars 2020 Rover Looking for Biosignatures on the Red Planet

pia21635_small
NASA/JPL-Caltech

While Opportunity and Curiosity continue to explore the surface of Mars, the launch date of NASA’s next big rover mission is on the horizon. And here’s a stunning artist’s impression of the mission that NASA released on Tuesday.

Wait. Isn’t that Curiosity?

No. While the Mars 2020 rover will certainly look like Curiosity, as many of the current rover’s design features will be worked into NASA’s next six-wheeled robot, there will be some key differences in the next rover’s science.

Rather than seeking out past and present habitable environments (as Curiosity is currently doing on the slopes of Mount Sharp), one of Mars 2020’s stated science goals is to directly search for biological signatures of past and present microbial life on Mars. This next-generation rover will also feature a drill that can bore deep into rocks, pull samples and store them on the Martian surface for a possible future sample return mission.

For more on Mars 2020, check out NASA’s mission site.

Curiosity Is Getting Diggy With It in Mars’ Ripply Dunes

NASA/JPL-Caltech/MSSS

There are few sights on Mars more satisfying than its oddly familiar — yet weirdly alien — dunes.

On the one hand, the Martian dunes look much like the dunes we have on Earth — aeolian (“wind-driven”) formations undulating across the landscape have similarities regardless of which planet they were blown on.

But there’s something uncanny about Martian dunes. Maybe it’s the “extra” tiny ripples that NASA’s Curiosity itself discovered — a phenomenon that is exclusive to the Martian atmosphere. Or maybe it’s just that I know these dunes are being seen through synthetic eyes on a world millions of miles across the interplanetary void.

Who knows.

But right now, the six-wheeled robot is sampling grains of wind-blown regolith from a linear dunes on the slopes of Mount Sharp to help planetary scientists on Earth build a picture of how this ancient landscape was shaped.

Curiosity scooped samples of linear dune material into the rover’s Sample Analysis at Mars (SAM) so they could be compared with material from other dunes it had visited in 2015 and 2016. Samples are also planned to be delivered to the mission’s Chemistry and Mineralogy (CheMin) instrument. As NASA points out, this is the first ever study of extraterrestrial dunes. (Dune fields also exist on Saturn’s moon Titan, but as recent research indicates, those are very different beasts and haven’t been directly sampled.)

“At these linear dunes, the wind regime is more complicated than at the crescent dunes we studied earlier,” said Mathieu Lapotre, of the California Institute of Technology (Caltech), in Pasadena, Calif., who led the Curiosity dune campaign. “There seems to be more contribution from the wind coming down the slope of the mountain here compared with the crescent dunes farther north.”

All of the dunes Curiosity has sampled are a part of the Bagnold Dunes, a dune field that stretches up the northwestern flank of Mount Sharp. Within the field, depending on the wind conditions, different types of dunes have been found.

“There was another key difference between the first and second phases of our dune campaign, besides the shape of the dunes,” said Lapotre in a NASA statement. “We were at the crescent dunes during the low-wind season of the Martian year and at the linear dunes during the high-wind season. We got to see a lot more movement of grains and ripples at the linear dunes.”

 

Mars Rover Curiosity’s Wheels Are Taking a Battering

The NASA robot continues to rove the unforgiving slopes of Mount Sharp, but dramatic signs of damage are appearing on its aluminum wheels.

NASA/JPL-Caltech/MSSS

In 2013, earlier than expected signs of damage to Curiosity’s wheels were causing concern. Four years on and, unsurprisingly, the damage has gotten worse. The visible signs of damage have now gone beyond superficial scratches, holes and splits — on Curiosity’s middle-left wheel (pictured above), there are two breaks in the raised zigzag tread, known as “grousers.” Although this was to be expected, it’s not great news.

The damage, which mission managers think occurred some time after the last wheel check on Jan. 27, “is the first sign that the left middle wheel is nearing a wheel-wear milestone,” said Curiosity Project Manager Jim Erickson, at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., in a statement.

After the 2013 realization that Curiosity’s aluminum wheels were accumulating wear and tear faster than hoped, tests on Earth were carried out to understand when the wheels would start to fail. To limit the damage, new driving strategies were developed, including using observations from orbiting spacecraft to help rover drivers chart smoother routes.

It was determined that once a wheel suffers three grouser breaks, the wheel would have reached 60 percent of its useful life. Evidently, the middle left wheel is almost there. According to NASA, Curiosity is still on course for fulfilling its science goals regardless of the current levels of wheel damage.

“This is an expected part of the life cycle of the wheels and at this point does not change our current science plans or diminish our chances of studying key transitions in mineralogy higher on Mount Sharp,” added Ashwin Vasavada, Curiosity’s Project Scientist also at JPL.

While this may be the case, it’s a bit of a downer if you were hoping to see Curiosity continue to explore Mars many years beyond its primary mission objectives. Previous rover missions, after all, have set the bar very high — NASA’s Mars Exploration Rover Opportunity continues to explore Meridiani Planum over 13 years since landing in January 2004! But Curiosity is a very different mission; it’s bigger, more complex and exploring a harsher terrain, all presenting very different engineering challenges.

Currently, the six-wheeled rover is studying dunes at the Murray formation and will continue to drive up Mount Sharp to its next science destination — the hematite-containing “Vera Rubin Ridge.” After that, it will explore a “clay-containing geological unit above that ridge, and a sulfate-containing unit above the clay unit,” writes NASA.

Since landing on Mars in August 2012, the rover has accomplished an incredible array of science, adding amazing depth to our understanding of the Red Planet’s habitable potential. To do this, it has driven 9.9 miles (16 kilometers) — and she’s not done yet, not by a long shot.

Epic Mars Rover Curiosity Video of the “7 Minutes of Terror”

This video has been doing the rounds, so I posted it on Discovery News on Tuesday. My favorite comment from a reader was: “I need a clean pair of shorts.” That means only one thing; it’s time for some epic NASA-created CGI of the entry, descent and landing (a.k.a. “EDL”) of the Mars Science Laboratory “Curiosity” set for landing on the Red Planet on August 5 at 9:30 p.m. (PST). To be honest, the video speaks for itself, so I’ll hand over to EDL Engineer Adam Stelzner (who really needs his own TV show — love his monolog).

Sometimes, You Just Have To Make Chocolate Mars Rover Cake

chocolatemer
Credit: Will Gater

OK, so Astroengine has been a little quiet of late due to some uber-cool space news writing over at Discovery News, but to kick off an era of increased productivity (and not just Photoshop fun), I just had to share this superb chocolate-covered tribute to Mars Exploration Rover Spirit.

Created by my mate Will Gater, science writer and editor of Sky at Night Magazine, this is Mars rover Spirit, complete with silica-churned (white chocolate) Mars regolith in its tire tracks. I’ll be back in the UK next week Will, I hope you saved me a slice!

Latest news on Spirit: Mars Rover Down? Spirit Stays Silent

Speaking of Mars rovers, in case you missed it, I had the awesome fortune to visit the next Mars rover to be launched to the Red Planet later this year. Seeing the nuclear-powered, laser-toting, car-sized rover up close is something I’ll never forget. For more, take a look at the Discovery News slide show I created with pictures from my NASA Jet Propulsion Laboratory adventures.

This is me, in the NASA JPL clean room housing Mars rover Curiosity. As you can see, I'm very happy to be there.
This is me, in the NASA JPL clean room housing Mars rover Curiosity. As you can see, I’m very happy to be there.

Mars Rover Spirit is Stuck in the Regolith

Spirit is stuck (NASA)

Mars Exploration Rover Spirit is in trouble again. She’s stuck.

The tenacious little robot has suffered traction problems before and has even been dragging around a broken wheel for the last three years, leaving the other five to take up the slack. Then there’s the dust storms that have hindered the life-giving solar panels ability to collect sunlight. And most recently, the on-board computers have been rebooting and Spirit’s flash memory has been forgetting to record data.

A little help here? Spirit has driven into soft ground, burying her wheels halfway. Engineers are working plans to extricate her. –A distress tweet from @MarsRovers

One of Spirit's buried wheels as taken by the front hazard-avoidance camera on Sol 1899, May 6th (NASA)
One of Spirit's buried wheels as taken by the front hazard-avoidance camera on Sol 1899, May 6th (NASA)

Now, she’s stuck in the Martian dirt after slipping backwards down a slope during a series of backward drives around a plateau called “Home Plate.”

Spirit is in a very difficult situation,” JPL project manager John Callas said. “We are proceeding methodically and cautiously. It may be weeks before we try moving Spirit again. Meanwhile, we are using Spirit’s scientific instruments to learn more about the physical properties of the soil that is giving us trouble.”

At JPL, a team have been assembled to try to find a solution to the problem with a model of the situation here on Earth. Unfortunately the wheels are stuck fast, half-buried, and scientists are increasingly worried that any attempts to free the struggling rover could make matters worse. The concern is for the chassis under the robot. Should it make contact with the rocks underneath, it would effectively beach itself, completely losing traction that could be used to free the wheels. In short, the situation is not good, but NASA is working overtime to find ways to get the rover on the road once more.

Fortunately, wind has helped the ailing rover recently, clearing excess dust off the solar panels, giving Spirit a much needed energy boost, but will it be enough to get her out of this difficult situation? If there’s a way, Spirit will find it, as let’s face it, she’s lived through a lot of hard knocks…

Source: NASA, AP