Nuking a Hurricane Is a Stupid Idea

Why have a hurricane when you could have a radioactive hurricane!

Hurricane Florence as seen from the International Space Station in September 2018 [NASA (edit by Ian O’Neill)]

Now, I don’t like to use the “s” word too often; it’s often misplaced and used to belittle someone’s lack of knowledge. A lack of knowledge doesn’t necessarily mean someone doesn’t want to learn, so to say an idea is stupid suggests someone is willfully ignorant. But this is one occasion where I’ll use “stupid” with a high degree of confidence that this idea is, well, very stupid:

President Trump has suggested multiple times to senior Homeland Security and national security officials that they explore using nuclear bombs to stop hurricanes from hitting the United States, according to sources who have heard the president’s private remarks and been briefed on a National Security Council memorandum that recorded those comments.

Axios

We’re now into year three of this administration’s willful ignorance of climate science, so it may not come as a surprise that the president doesn’t like to surround himself with many scientifically-savvy minds, lest their ideas get in the way of his administration’s damaging policies. So, while his statements may sound a little, shall we say, “extreme,” he’s coming from a place of ignorance and a horrible worldview that obsesses over detonating nuclear weapons to solve problems.

It’s easy for the science community to mock Trump’s comments as he often delivers these half-baked ideas with such bombastic enthusiasm that every day feels like an episode of The Twilight Zone, but it might come as a surprise to hear that he’s not the first to float the idea of nuking hurricanes. In fact, the idea of interrupting the convection currents of hurricanes over the Atlantic Ocean with nuclear blasts dates back to the Eisenhower era. And since then, the National Oceanic and Atmospheric Administration (which is a government body, I might add) regularly receives queries about going all Dr. Strangelove on the Atlantic.

During each hurricane season, there always appear suggestions that one should simply use nuclear weapons to try and destroy the storms. Apart from the fact that this might not even alter the storm, this approach neglects the problem that the released radioactive fallout would fairly quickly move with the tradewinds to affect land areas and cause devastating environmental problems. Needless to say, this is not a good idea.

NOAA

Fears of spreading radioactive fallout far and wide notwithstanding, if a nuke was actually effective at snuffing out a hurricane before it can even form, or at least redirect a powerful one from hitting Florida, say, wouldn’t the ends justify the means? In other words, if a deadly storm (capable of killing thousands) is averted, is a little bit of radiation really that bad? Well, yes, it is really bad, but nuking the ocean would be terribly ineffective hurricane mitigation effort.

As discussed by the NOAA, the amount of energy carried by a fully developed hurricane is huge and to interrupt or redirect a formed hurricane would require a lot of nuclear warheads detonating all the time.

The main difficulty with using explosives to modify hurricanes is the amount of energy required. A fully developed hurricane can release heat energy at a rate of 5 to 20×1013 watts and converts less than 10% of the heat into the mechanical energy of the wind. The heat release is equivalent to a 10-megaton nuclear bomb exploding every 20 minutes. According to the 1993 World Almanac, the entire human race used energy at a rate of 1013 watts in 1990, a rate less than 20% of the power of a hurricane.

NOAA

That’s not all: to concentrate the compression effects of the nuclear blasts on the central region of the cyclone to effectively dampen its sheer power, in a nutshell, simply isn’t possible.

OK then, why not drop a bomb on the weak tropical depressions (i.e. the seeds of hurricanes) to prevent them from growing in the first place? Well, that would be a crap-shoot. According to the NOAA, “[a]bout 80 of these disturbances form every year in the Atlantic basin, but only about 5 become hurricanes in a typical year.” There’s no obvious way of knowing which ones will ripen into that “killer” storm and, besides, we’d still need to dump a lot of nuclear energy into those depressions to stand a chance of stopping them.

Of course, these arguments sound reasonable; there are very few informed people who, after a little research, would doubt that firing nukes at weather systems is a stupid idea. But here we are, talking about the leader of the richest and most powerful nation on the planet wanting to wage a nuclear war on Mother Nature herself, while ignoring the very real science behind global warming (which, by the way, supercharges the ferocity of hurricanes) that is currently causing irreparable damage to our ecosystem.

What a time to be alive.

UPDATE (Aug. 26): Trump denies everything. In a baffling mix of third and first person, which leads me to believe it’s all true:

I, For One, Welcome Our New Tardigrade Overlords

“One small step for (a) water bear, one giant leap for water-dwelling eight-legged segmented micro-animals.” —Teddy Tardigrade

Tardigrades are everywhere. And now they’re on the Moon [Public Domain]

Are you thinking what I’m thinking? Because if you are, you’re thinking that exposing tardigrades to high-energy cosmic rays can only mean one thing: super-tardigrades. From Live Science:

The Israeli spacecraft Beresheet crashed into the moon during a failed landing attempt on April 11. In doing so, it may have strewn the lunar surface with thousands of dehydrated tardigrades, Wired reported yesterday (Aug. 5). Beresheet was a robotic lander. Though it didn’t transport astronauts, it carried human DNA samples, along with the aforementioned tardigrades and 30 million very small digitized pages of information about human society and culture. However, it’s unknown if the archive — and the water bears — survived the explosive impact when Beresheet crashed, according to Wired.

Mindy Weisberger, Senior Writer

Well, OK, as tough as they are, it’s probably unlikely that those microscopic explorers will re-hydrate any time soon before being hit by high-energy particles that will then endow the tiny guys with Marvel-like superpowers, but it’s nice to dream.

But what are tardigrades? Let’s go back to Mindy’s Live Science article, because her explanation is simply too adorable not to reprint:

Tardigrades, also known as moss piglets, are microscopic creatures measuring between 0.002 and 0.05 inches (0.05 to 1.2 millimeters) long. They have endearingly tubby bodies and eight legs tipped with tiny “hands”; but tardigrades are just as well-known for their near-indestructibility as they are for their unbearable cuteness.

Moss piglets! Or should we now say moon piglets?

Light-hearted tardigiggles aside, it’s hard not to feel sorry for the tiny sleeping creatures. In a dehydrated state, they can remain hibernating (I’m not sure if that’s the correct term for being freeze-dried, but let’s go with hibernating) for a decade (!) while they wait for water to appear so they can go about their tardigradey business. They’ve been discovered in just about every environment on Earth, are extremely resilient and can even survive in space without a tiny spacesuit to keep them warm. In short, they’re pretty amazing. And now they’re on the Moon, which may or may not be a good thing (there’s a lot of cosmic rays up there).

Bonus: I’ll close with a short story:

Tonight’s “Black Moon” Isn’t Actually a Thing

The media strikes again.

Ahhh the glorious Black Moon. Seriously, it’s there. [via NASA-SVS]

Who doesn’t love the moon? You just have to look up when the skies are clear and there it is, our lunar friend, doing its thing, changing phases, yanking at our oceans, inspiring the world to look “up.”

It’s little wonder, then, that humanity has created many different names for our planet’s tidal partner in crime. There are useful astronomical names that describe its different phases (new/full, first/third quarter, waxing/waning crescent/gibbous), but there’s also other names that have popped up throughout human history that relate to other subtleties in the lunar dance around our world. A quasi-rare second full moon of the month? Blue moon! When the full moon coincides with perigee (lunar close approach with Earth)? Supermoon! When you get a bonus lunar combo that includes a full moon, a supermoon… and the Earth is blocking the sun so we have a lunar eclipse… and it all happens to occur in January?? That’s a SUPER BLOOD WOLF MOON ECLIPSE! Because of course it is.

As you may or may not have realized, humans—particularly humans in marketing departments, the media, and astrologers with too much time on their hands—like to label things. Some of these labels can be useful, others not so much. Many are, frankly, just plain silly. Which brings me to today’s lunar branding non-event: The Black Moon. Ohh sounds… eerie.

Over to Joe Rao at SPACE.com:

As one who has been involved in the broadcasting field for nearly 40 years, I’d like to point out that we live in a time when the news media is seemingly obsessed with “branding.” This marketing strategy involves creating a differentiated name and image — often using a tagline — in order to establish a presence in people’s mind. In recent years in the field of astronomy, for example, we’ve seen annular eclipses — those cases when the moon is too small to completely cover the disk of the sun — become branded as “Ring of Fire” eclipses. A total eclipse of the moon — when the moon’s plunge through the Earth’s shadow causes the satellite to turn a coppery red color — is now referred to as a “Blood Moon.” 

When a full moon is also passing through that part of its orbit that brings it closest to Earth — perigee — we now brand that circumstance as a supermoon. That term was actually conjured up by an astrologer back in 1979 but quite suddenly became a very popular media brand after an exceptionally close approach of a full moon to Earth in March 2011. It surprises me that even NASA now endorses the term, although it seems to me the astronomical community in general shies away from designating any perigee full moon as “super.”

Then there is Blue Moon. This moniker came about because a writer for Sky & Telescope Magazine misinterpreted an arcane definition given by a now-defunct New England Almanac for when a full moon is branded “blue,” and instead incorrectly reasoned that in a month with two full moons, the second is called a Blue Moon. That was a brand that quietly went unnoticed for some 40 years, until a syndicated radio show promoted the term in the 1980s and it then went viral. So now, even though the second full moon in a month is not the original definition for a Blue Moon, in popular culture we now automatically associate the second full moon in a calendar month with a Blue Moon.

So are you ready for yet another lunar brand? The newest one is Black Moon.

Joe Rao, “Black Moon 2019: What It Is (and Why You Can’t See It)“, SPACE.com

That’s a very polite way of saying, “it’s all bullshit, really.”

So, what IS a Black Moon? Well, it’s the opposite of a Blue Moon, as in it’s the second New Moon in the month of July and a New Moon is when the sun, moon and Earth are in almost exact alignment; the entire Earth-facing side of the moon is in complete shadow. The upshot is you can’t see it. It’s a naked-eye astronomical non-event.

Having said that, should the moon exactly line up with the sun, you get a solar eclipse—arguably the most mind-blowing astronomical event we can see on Earth. A plain ol’ Black Moon? Not so much.

UPDATE: As this post turned into the seed for a fun little online discussion, I added some thoughts in the following Twitter thread. Feel free to @ me:

When a Climate Emergency Turns Into a Human Catastrophe

There’s nothing subtle about this deadly consequence of global warming.

[Pexels]

While the recent record-breaking temperatures in Europe have grabbed the headlines, it’s worth remembering that such record-shattering heatwaves are nothing new to other regions of the planet. And many of those regions are fast approaching a grim reality: heat events that will overwhelm the body’s ability to function.

From “Heatwave: think it’s hot in Europe? The human body is already close to thermal limits elsewhere“:

Once this wetbulb temperature threshold is crossed, the air is so full of water vapour that sweat no longer evaporates. Without the means to dissipate heat, our core temperature rises, irrespective of how much water we drink, how much shade we seek, or how much rest we take. Without respite, death follows – soonest for the very young, elderly or those with pre-existing medical conditions.

Wetbulb temperatures of 35°C have not yet been widely reported, but there is some evidence that they are starting to occur in Southwest Asia. Climate change then offers the prospect that some of the most densely populated regions on Earth could pass this threshold by the end of the century, with the Persian GulfSouth Asia, and most recently the North China Plain on the front line. These regions are, together, home to billions of people.

Tom Matthews, Climate Scientist, Loughborough University, The Conversation.

Matthews goes on to warn of “grey swan” events (read his research here, via Nature Climate Change), where overwhelming heat and moisture is coupled with mass power outages triggered by anthropomorphic global warming-boosted extreme weather events to leave vast populated regions physically unable to keep cool.

While many effects of climate change may seem subtle or “something for future generations to worry about,” this extreme situation will happen sooner rather than later, and as Matthews discusses, it has probably already been experienced.

Any debate about the realities of climate change is a distant dot in the rear-view mirror, and, according to a recent study, the scientific consensus that humans are driving global warming has passed 99 percent. (In reality, the consensus that humans are causing the planet to heat up has been an overwhelming majority for years, likely decades.)

Sadly, scientific consensus isn’t enough to stymie the emissions of greenhouse gasses—if it was, the oil rigs and coal mines would have been shut down years ago. It’s the human disposition for greed and myopic politics that will turn this once ecologically-diverse planet into an increasingly inhospitable place for humans to thrive.

The pushback has been political rather than scientific. In the US, the rightwing thinktank the Competitive Enterprise Institute (CEI) is reportedly putting pressure on Nasa to remove a reference to the 97% study from its webpage. The CEI has received event funding from the American Fuel and Petrochemical Manufacturers and Charles Koch Institute, which have much to lose from a transition to a low-carbon economy.

Johnathan Watts, The Guardian

Policy makers who claim to be “skeptical” about the overwhelming scientific consensus that humans are causing global warming aren’t necessarily uneducated fools. They simply do not care. Democracy has long been hijacked by special interest groups and corporations that care little about the future health of the environment and society. In the long run, their belligerent self-interest will undercut their bottom line. It won’t be long until our carbon-driven economy will collapse under the weight of relentless impacts caused by the continued burning of fossil fuels.

It’s the ultimate self-own, and it’s a shame they’ll take us with them.

There’s Something Massive Buried Under the Moon’s Far Side

And it’s likely the massive metallic corpse of an ancient asteroid

This false-color graphic shows the topography of the far side of the Moon. The warmer colors indicate high topography and the bluer colors indicate low topography. The South Pole-Aitken (SPA) basin is shown by the shades of blue. The dashed circle shows the location of the mass anomaly under the basin. [NASA/Goddard Space Flight Center/University of Arizona]

It may be Earth’s only natural satellite and our closest alien world, but the Moon still hides a multitude of mysteries under its surface—including something massive embedded in its far side.

As detailed in a new study published in the journal Geophysical Research Letters, researchers led by Baylor University analyzed data from NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission that orbited above the lunar surface for a little under a year in 2012.

The two GRAIL spacecraft flew one in front of the other, precisely measuring the distance of their separation in order to detect very small fluctuations in the Moon’s gravitational field. When the spacecraft passed over a region of higher density, the local gravitational field would become enhanced, slightly accelerating the leading spacecraft (called “Ebb”) before the trailing spacecraft (“Flow”) experienced that acceleration. By mapping these acceleration fluctuations, scientist have gained an invaluable understanding of density fluctuations deep below the Moon’s surface that would have otherwise remained invisible.

During this recent analysis, the researchers discovered a gravitational “anomaly” beneath the South Pole-Aitken basin—a vast depression on the lunar far side spanning 2,000 miles wide and several miles deep. This anomaly represents a huge accumulation of mass hundreds of miles below the basin.

“Imagine taking a pile of metal five times larger than the Big Island of Hawaii and burying it underground. That’s roughly how much unexpected mass we detected,” said Peter B. James, of Baylor University and lead author of the study, in a statement.

How did all that material end up buried inside the Moon’s mantle? The South Pole-Aitken basin was created four billion years ago in the wake of a massive asteroid impact. In fact, the basin is known to be one of the biggest impact craters in the solar system. If this crater was formed by an impact, it stands to reason that the gravitational anomaly is being caused by the dense metallic remains of the massive asteroid that met its demise when the Earth-Moon system was in the throes of formation.

“When we combined [the GRAIL data] with lunar topography data from the Lunar Reconnaissance Orbiter, we discovered the unexpectedly large amount of mass hundreds of miles underneath the South Pole-Aitken basin,” added James. “One of the explanations of this extra mass is that the metal from the asteroid that formed this crater is still embedded in the Moon’s mantle.”

There may be other explanations, one of which focuses on the formation of the Moon itself. As the lunar interior cooled after formation, the large subsurface mass could be an accumulation of “dense oxides associated with the last stage of lunar magma ocean solidification,” the researchers note.

The metallic corpse of an ancient asteroid is the leading candidate, however, and computer simulations carried out by the team indicated that if the conditions are right, the dense iron-nickel core of an asteroid can be dispersed inside the Moon’s mantle where it remains embedded today without sinking into the lunar core.

Although there were certainly larger asteroid impacts throughout the history of our solar system, the Moon’s South Pole-Aitkin basin is the largest preserved impact crater known, making it a prime candidate to study ancient impact sites

“[It’s] one of the best natural laboratories for studying catastrophic impact events, an ancient process that shaped all of the rocky planets and moons we see today,” said James.

It just so happens that we currently have a mission at the basin, exploring this strange and unexplored place. On Jan. 3, the Chinese Chang’e 3 mission achieved the first soft touchdown on the lunar far side, landing inside Von Kármán crater and releasing a robotic rover, Yutu-2, to explore the landscape. At time of writing, the mission is ongoing.

Toxic “Habitable” Worlds Could Be Havens for Alien Microbes

Don’t forget your spacesuit: Complex lifeforms, such as humans, would not survive on many of the worlds we thought would be interstellar tropical getaways

[Pixabay]

Worlds like Earth may be even rarer than we thought.

We live on a planet that provides the perfect balance of ingredients to support a vast ecosystem. This amazing world orbits the Sun at just the right distance where water can exist in a liquid state—a substance that, as we all know, is an essential component for our biology to function. Earth is also an oddball in our solar system, being the only planet where these vast oceans of liquid water persist on its surface, all enshrouded in a thick atmosphere that provides the stage for a complex global interplay of chemical and biological cycles that, before we industrialized humans came along, has supported billions of years of uninterrupted evolution and biological diversity.

Humans, being the proud intelligent beings that we profess to be, are stress-testing this delicate balance by pumping an unending supply of carbon dioxide into the atmosphere. Being a potent greenhouse gas, we’re currently living through a new epoch in our planet’s biological history where an exponential increase in CO2 is being closely followed by an increase in global average temperatures. We are, in effect, altering Earth’s habitability. Well done, humans!

While this trend is a clear threat to the sustainability of our biosphere, spare a thought for other “habitable” worlds that may appear to have all the right stuff for complex lifeforms to evolve, but toxic levels of the very chemicals that keep these worlds habitable has curtailed the possibility of complex life from gaining a foothold.

Welcome to the Not-So-Habitable Zone

Habitable zone exoplanets are the Gold Standard for exoplanet-hunters and astrobiologists alike. Finding a distant alien world within this zone—a region surrounding any star where it’s not too hot and not too cold for water to exist on its surface, a region also known as the “Goldilocks Zone” for obvious reasons—spawns a host of questions that our most advanced telescopes in space and on the ground try to answer: Is that exoplanet Earth-sized? Does it have an atmosphere? What kind of star is it orbiting? Does its system possess a Jupiter-like gas giant? These questions are all trying to help us understand whether that world has the Earthly qualities that could support hypothetical extraterrestrial life.

(Of course, there’s the debate as to whether all life in the universe is Earth-life-like, but as we’re the only biological examples that we know of in the entire galaxy, it’s the best place to start when pondering what biological similarities extraterrestrial life may have to us.)

The habitable zone for exoplanets is a little more complicated than simply the distance at which they orbit their host stars, however. Greenhouse gases, such as carbon dioxide, can extend the area of a star’s habitable zone. For example: If an atmosphere-less planet orbits beyond the outermost edge of its habitable zone, the water it has on its surface will remain in a solid, frozen state. Now, give that planet an atmosphere laced with greenhouse gases and its surface may become warm enough to maintain the water in a liquid state, thereby boosting its habitable potential.

But how much is too much of a good thing? And how might this determination impact our hunt for truly habitable worlds beyond our own?

In a new study published in the Astrophysical Journal, researchers have taken another look at the much-coveted habitable zone exoplanets to find that, while some of the atmospheric gases are essential to maintain a temperature balance, should there be too much of the stuff keeping some of those worlds at a habitable temperature, their toxicity could curtail any lifeforms more complex than a single-celled microbe from evolving.

“This is the first time the physiological limits of life on Earth have been considered to predict the distribution of complex life elsewhere in the universe,” said Timothy Lyons, of the University of California, Riverside, and director of the Alternative Earths Astrobiology Center.

“Imagine a ‘habitable zone for complex life’ defined as a safe zone where it would be plausible to support rich ecosystems like we find on Earth today,” he said in a statement. “Our results indicate that complex ecosystems like ours cannot exist in most regions of the habitable zone as traditionally defined.”

Toxic Limits

Carbon dioxide is an essential component of our ecosystem, particularly as it’s a greenhouse gas. Acting like an insulator, CO2 absorbs energy from the Sun and heats our atmosphere. When in balance, it stops too much energy from being radiated back out into space, thereby preventing our planet from being turned into a snowball. Levels of CO2 have ebbed and flowed throughout the biological history of our planet and it has always been a minor component of atmospheric gases, but its greenhouse effect (i.e. the atmospheric heating effect) is extremely potent and the human-driven 400+ppm levels are causing dramatic climate changes that modern biological systems haven’t experienced for millions of years. That said, the CO2 levels required to keep some “habitable” exoplanets in a warm enough state would need to be a lot more concentrated than the current terrestrial levels, potentially making their atmospheres toxic.

“To sustain liquid water at the outer edge of the conventional habitable zone, a planet would need tens of thousands of times more carbon dioxide than Earth has today,” said lead author Edward Schwieterman, of the NASA Astrobiology Institute. “That’s far beyond the levels known to be toxic to human and animal life on Earth.”

In the blue zone: some of the known exoplanets that fall within the habitable zones of their stars may have an overabundance of CO (yellow/brown), at a level that is toxic to human life. Likewise, the more CO2 (from blue to white) will become toxic at a certain point. The sweet-spot is where Earth sits, with Kepler 442b (if it has a habitable atmosphere) coming in second [Schwieterman et al., 2019. Link to paper]

From their computer simulations, to keep CO2 at acceptable non-toxic levels, while maintaining planetary habitability, the researchers realized that for simple animal life to survive, the habitable zone will shrink to no more than half of the traditional habitable zone. For more complex lifeforms—like humans—to survive, that zone will shrink even more, to less than one third. In other words, to strike the right balance between keeping a hypothetical planet warm enough, but not succumbing to CO2 toxicity, the more complex the lifeform, the more compact the habitable zone.

This issue doesn’t stop with CO2. Carbon monoxide (CO) doesn’t exist at toxic levels in Earth’s atmosphere as our hot and bright Sun drives chemical reactions that remove dangerous levels of the molecule. But for exoplanets orbiting cooler stars that emit lower levels of ultraviolet radiation, such as those that orbit red dwarf stars (re: Proxima Centauri and TRAPPIST-1), dangerous levels of this gas can accumulate. Interestingly, though CO is a very well-known toxic gas that prevents animal blood from carrying oxygen around the body, it is harmless to microbes on Earth. So it may be that habitable zone exoplanets orbiting red dwarfs could be a microbial heaven, but an asphyxiation hell for more complex lifeforms that have cardiovascular systems.

While it could be argued that life finds a way—extraterrestrial organisms may have evolved into more complex states after adapting to their environments, thereby circumventing the problems complex terrestrial life has with CO2 and CO—if we are to find a truly “Earth-like” habitable world that could support human biology, these factors need to be considered before declaring an exoplanet habitable. And, besides, we might want to make the interstellar journey to one of these alien destinations in the distant future; it would be nice to chill on an extraterrestrial beach without having to wear a spacesuit.

“Our discoveries provide one way to decide which of these myriad planets we should observe in more detail,” said Christopher Reinhard, of the Georgia Institute of Technology and co-leader of the Alternative Earths team. “We could identify otherwise habitable planets with carbon dioxide or carbon monoxide levels that are likely too high to support complex life.”

Earth: Unique, Precious

Like many astronomical and astrobiological studies, our ongoing quest to explore strange, new (and habitable) worlds has inevitably led back to our home and the relationship we have with our delicate ecosystem.

“I think showing how rare and special our planet is only enhances the case for protecting it,” Schwieterman said. “As far as we know, Earth is the only planet in the universe that can sustain human life.”

So, before we test the breaking point of our atmosphere’s sustainability, perhaps we should consider our own existential habitability before its too late to repair the damage of carbon dioxide emissions. That’s the only way that we, as complex (and allegedly intelligent) lifeforms, can continue to ask the biggest questions of our rich and mysterious universe.

What Might We Name the First Mars Microbes?

I, for one, welcome our new Mars desert-dwelling overlords.

Just some random (terrestrial) microbes doing microbial things [MSU]

It’s a question I’ve been pondering for some time: if we discover microbes eking out an existence on Mars, what might they be called? At first, I presumed it would be a variation on how we designate microbial names on Earth. Something like Staphylococcus aureus but swap out the “aureus” for “ares” (Greek for “Mars”, the god of war) or … something.

As you can see, biology isn’t my strong suit and butchering Latin and Greek is all in a day’s work. So, feeling out of my depth, I decided to leave that thought alone and file the idea under “Interesting, But Needs More Research.” That’s where the topic stayed for a while; I wanted to wait for a related piece of science to appear in a journal that could be a catalyst for my question. And last week, that research surfaced. I saw my opportunity.

Searching for Martians on Earth

The Atacama Desert is an amazing place. Having visited the ESO’s Paranal Observatory and the Atacama Large Millimeter/submillimeter Array in 2016 as a lucky member of the #MeetESO team, I have first-hand experience of that extreme and breathtaking region. While driving between sites, we’d often go for hours without seeing any vegetation or life of any kind. Atacama is the driest place on Earth; its salty, parched soil is bombarded by ultraviolet radiation, and the core of the desert doesn’t receive rain for decades. But just because life isn’t obvious in the arid ‘scapes, that doesn’t mean it’s not there.

The flora and fauna that does call Atacama their home are very specialized in finding ways to thrive. On the smallest life scales, for some microbes that means living underground, which makes them very interesting organisms indeed.

In a new study, published in Frontiers in Microbiology, the results of a mock-Mars-life-hunting rover campaign in the Atacama Desert’s core have been revealed.

The research was driven, in part, to develop techniques for robotic missions to the Red Planet that will seek out alien bacteria that may be holed up in an underground colony. Remember, Mars has the same land area as Earth, so there’s a lot of real estate to search for microscopic lifeforms. Sure, scientists are smart and can narrow down potentially-habitable regions that they can drop a life-seeking robot on, but once landed on that toxic soil, what kind of methodology should they use to look for these hypothetical bacteria? The Atacama Desert makes for a decent analog of Mars; it’s very dry and its soil is laced with toxic perchlorate salts, so if microbes on Mars bear any resemblance to the nature of microbes in the Atacama, scientists can take a stab at predicting their behavior and guide their Mars rovers to the most likely places where they might be hiding.

Researchers already know that bacterial life occupies even the harshest Atacama regions, but according to team leader Stephen Pointing, a professor at Yale-NUS College in Singapore, the microbes we are familiar with are common species that live on the surface, using sunlight for energy. But Pointing isn’t so interested in what’s on the surface; his rover is fitted with a drill and extraction system that can take samples of soil from underground. During the campaign, Pointing’s team made some compelling discoveries.

“We saw that with increasing depth the bacterial community became dominated by bacteria that can thrive in the extremely salty and alkaline soils,” he told me. “They in turn were replaced at depths down to 80 centimeters by a single specific group of bacteria that survive by metabolizing methane.”

Methane. Huh. That’s interesting.

These subsurface microbes are known to science — they have been found in deep mine shafts and other subterranean environments — but they’ve never been found living under the surface of the world’s most arid region. They’ve also fine-tuned their evolution to specifically adapt to this harsh environment. “The communities of bacteria that we discovered were remarkably lacking in complexity, and this likely reflects the extreme stress under which they develop,” said Pointing.

The biggest discovery made during this research was that the subsurface colonies of bacteria were very patchy, said Pointing, a factor that will have ramifications for the search for their Martian cousins. “The patchy nature of the colonization suggest that a rover would be faced with a ‘needle in a haystack’ scenario in the search for Martian bacteria,” he said.

Desert Planet Survivor

This research is a fascinating glimpse into how Earth-based environments are being used to better understand how alien bacteria may evolve in their native environments. But the desert-thriving, methane-munching bacteria of the Atacama may also inspire their name — should they be discovered one day.

Pointing explained: “The way we assign Latin names to bacteria is based on their evolutionary relationship to each other and we measure this using their genetic code. The naming of Martian bacteria would require a completely new set of Latin names at the highest level if Martian bacteria were a completely separate evolutionary lineage — that is they evolved from a different common ancestor to Earth bacteria in a “second genesis” event [and not related to Earth life via panspermia]. If we find truly “native” Martian bacteria I would love to name one, and call it Planeta-desertum superstes, which translates in Latin to ‘survivor on the desert planet.'”

So there we have it, an answer to my question about what our Martian neighbors might be called, if we find them: Planeta-desertum superstes, the desert planet survivor.

Read more about Pointing’s research in my HowStuffWorks article “Hunting for Martians in the Most Extreme Desert on Earth

Oldest Earth Rock Found In Lunar Exile

When our young planet was taking a beating by massive impacts, bits were ejected into space—and some ended up on the moon.


An artist’s impression of what our planet probably looked like over 4 billion years ago, during the violent Hadean epoch [Simone Marchi (SwRI), SSERVI, NASA]

This is an interesting thought: When Apollo astronauts were busy exploring the lunar surface, it wasn’t just moon rocks that were crunching beneath their moon boots—bits of Earth were there too. But how did Earth stuff get mixed-in with moon stuff?

According to a new study published in the journal Earth and Planetary Science Letters, this question may be a controversial one, but it’s not without some compelling evidence.

During the Apollo 14 moon landing in February 1971, when NASA astronauts Alan Shepard and Ed Mitchell were exploring the Fra Mauro Highlands, they scooped up some moon rocks and returned them to Earth for study. Fast-forward 48 years and an international group of researchers think that a 2 gram shard of rock in one of their scoops has terrestrial origins. That is a cool find in itself, but this particular sample is ancient, and possibly the oldest sample of Earth rock ever found, heralding from a time when the Earth was a very different place.

Between 4 and 4.6 billion years ago, our planet was a mess. Still in the process of forming, it was getting pummeled by an incessant barrage of asteroids and comets. Many parts of the Earth’s surface would have been molten, all of it would have been cratered, and none of the continents or oceans that we are familiar with today would have been present (see the image at the top of this page for an imagining of what it may have looked like). This was the Hadean epoch — named after the Greek god of the underworld, Hades — and it would have been a hellish time.

Apollo 14’s Ed Mitchell using a map during an EVA [NASA]

With all these impacts, large and small, it seems logical to think that a few of these impacts would have been large enough to launch a sizable quantity of debris into space. Back then, the moon orbited Earth much closer than it does now — four times closer in fact (which is a cool thought; the moon would have loomed four times larger in Hadean skies than it does now). As the moon was closer, there would have been higher odds of the terrestrial collision debris to come crashing down on the lunar surface. And this was the beginning of the epic journey of the 2 gram shard of rock that was returned to Earth and now lives in a lab.

The international team of researchers are associated with the Center for Lunar Science and Exploration, a part of NASA’s Solar System Exploration Research Virtual Institute, and they carried out a new analysis technique to search for Earth rocks in the Apollo moon samples. In one of the samples was a piece that is composed of quartz, feldspar, and zircon. These minerals are all common on Earth, but not on the lunar surface. Their interest was piqued. Further chemical analysis of the sample revealed how the rock formed: it crystallized in an oxidized atmosphere at temperatures more akin to Earth’s at the time. Moon rock typically crystallized at much higher temperatures devoid of an oxygen-rich atmosphere. The implication is clear: this particular sample didn’t form on the moon, it formed on Hadean Earth. But its journey from the Earth to the moon and into an Apollo astronaut’s sample scoop is quite the epic story.

A sample of moon rock collected by Apollo 14 astronauts [NASA]

Through the chemical analysis on the sample, a surprising amount of detail about the hows and whens could be deduced. First, after considering the mineral components of the sample, the rock must have formed around 20 kilometers under the surface, in young Earth’s crust, approximately 4.1 billion years ago. At the time, it wasn’t uncommon for massive impacts to excavate craters thousands of kilometers wide. These impact events would have easily have reached 20 kilometers deep, blasting some Earth stuff into space. The 2-gram sample was likely part of a bigger chunk that eventually collided with the moon, creating its own lunar crater, where it remained, in relative peace for a couple of hundred million years. Then, around 3.9 billion years ago, another lunar impact pummeled the sample, partially melting it, burying it deeper under the moon’s surface.

This sample holds this incredible record of geological history of a time when massive impacts were very common, when planets were accreting mass and life was just beginning to emerge on an embryonic Earth. After that lunar impact, the sample remained buried in moon rock for a few billion years.

Then, 26 million years ago, a comparatively small meteoroid slammed into the moon to create the 340-meter wide Cone Crater. The 2-gram sample was once again kicked onto the moon’s surface where it was randomly scooped by Shepard or Mitchell in 1971. The photograph below shows the boulders at the rim of Cone Crater where the sample was collected:


A photo taken on the Apollo 14 mission in the Fra Mauro highlands of the moon showing a cluster of boulders on the rim of Cone Crater during EVA-2 [NASA]

Although it may be logical to assume that ancient rocky debris from Earth likely ended up on the moon’s surface, it’s phenomenal that a tiny piece of Hadean Earth was discovered in an Apollo 14 sample. This could be an indicator as to how common it is; Earth rock preserved for billions of years on a world with no weather or tectonic processes continually erasing signs of the geological past, helping us better understand how our planet evolved.

Our Universe Is a Cosmic Mixologist Looking for the Recipe of Life

Creating the conditions of interstellar space in the lab has led to a sweet discovery

The Egg Nebula, as imaged by Hubble, is a protoplanetary nebula with a young star in its core [NASA/ESA]

What do you get if you combine water with methanol and then bombard the mix with radiation? It turns out that the resulting cocktail is where the building blocks for life are found. But these chemicals aren’t bubbling out of the puddles of primordial goo pooling on some alien planet; the cocktail shaker is the frigid depths of interstellar space and the mixologist is the universe.

As described in a new study published on Tuesday in Nature Communications, a team of NASA scientists took what they knew of interstellar space and recreated it in a laboratory experiment. Interstellar space may not seem like a place where the chemistry of life could gain a foothold, but given enough time and the right ingredients, chemical reactions do happen — albeit very slowly. And if there’s one thing the universe has it’s time, and we’re beginning to understand that the cosmos we reside in could be a vast organic experiment.

“The universe is an organic chemist,” said Scott Sandford, a senior scientist in the NASA Ames Astrophysics and Astrochemistry Laboratory and co-investigator of the study. “It has big beakers and lots of time — and the result is a lot of organic material, some of which is useful to life.” 

To see what chemistry might be going on in the void between the stars, the researchers simulated this extreme environment inside a vacuum chamber at Ames that was cooled to near-absolute zero. Inside, they placed an aluminum substance and then added the gaseous mixture of water vapor and methanol, a very common carbon-based molecule that is known to exist throughout our galaxy. Holding the aluminum at such low temperatures caused a frosty layer to form upon it. Then, they irradiated the substance with ultraviolet light — a form of radiation that is abundant in stellar nurseries, for example — and found that some interesting chemical reactions had occurred.

They discovered that a variety of sugar derivatives had formed on the substance — and one of those sugars was 2-deoxyribose. Yes, the same stuff you’d find in deoxyribonucleic acid. That’s the “D” in our DNA.

But this isn’t the first time an essential ingredient for life has been created in the lab while simulating the conditions of interstellar space. In 2009, the same team announced the discovery of uracil in their laboratory experiments — a key component of ribonucleic acid (RNA), which is central to protein synthesis in living systems. Also, in 2016, a French group discovered the formation of ribose, the sugar found in RNA.

“For more than two decades we’ve asked ourselves if the chemistry we find in space can make the kinds of compounds essential to life. So far, we haven’t picked a single broad set of molecules that can’t be produced,” said Sandford in a NASA statement. 

Although these are significant discoveries that provide new insights to how and where the most basic ingredients for life may form, it’s a long way from helping us understand whether or not life is common throughout the universe. But it turns out that some of the coldest spaces in the cosmos could also be the most fertile environments for the formation of a range of chemicals that are essential for life on Earth. It’s not such a reach, then, to realize that the protoplanetary disks surrounding young stars will also contain these chemicals and, as planets form, these chemicals become an intrinsic ingredient in young planets, asteroids and comets. Over four billion years ago, when the planets condensed from our baby Sun’s nebulous surroundings, Earth may have formed with just the right abundance of molecules that form the backbone of DNA and RNA to kick-start the genesis of life on our planet. Or those ingredients were delivered here later in the frozen cores of ancient comets and asteroids.

The building blocks of life are probably everywhere, but what “spark” binds these chemicals in such a way that allows life to evolve? This question is probably well beyond our understanding for now, but it seems that if you give our Cosmic Mixologist enough time to concoct all the chemicals for life, life will eventually emerge from the cocktail.

It’s a Trap: Extraterrestrial Ozone May be Hidden at Exoplanets’ Equators

eso1736a-rotated (1)
ESO/M. KORNMESSER

Fortunately for life on Earth, our planet has an ozone layer. This high-altitude gas performs an invaluable service to biology, acting as a kind of global “sunscreen” that blocks the most damaging forms of ultraviolet radiation. Early in the evolution of terrestrial life, if there were no ozone layer, life would have found it difficult to gain a foothold.

So, in our effort to seek out exoplanets that are suitable for life, future telescopes will seek out so-called “biosignatures” in the atmospheres of alien worlds. Astrobiologists would be excited to find ozone in particular — not only for its biology-friendly, UV-blocking abilities, but also because the molecule’s building blocks (three oxygen atoms) can originate from biological activity on the planet’s surface.

But in a new study published Wednesday (Nov. 29) in the journal Monthly Notices of the Royal Astronomical Society, researchers modeling atmospheric dynamics on tidally-locked “habitable zone” exoplanets have concluded that finding ozone in these exo-atmospheres may be a lot more challenging than we thought.

Red Dwarf Hellholes

Recently, two exoplanets have taken the science news cycle by storm. The first, Proxima b, is touted as the closest temperate exoplanet beyond our solar system. Located a mere 4.22 light-years from Earth, this (presumably) rocky world orbits its star, Proxima Centauri, at just the right distance within the habitable zone. Should this world possess an atmosphere, it would receive just the right amount of energy for any water on its surface to exist in a liquid state. As liquid water is essential for life on Earth, logic dictates that life may be possible there too.

Whether or not Proxima b has the right orbit about its star is academic; there are many other factors to consider before calling it “Earth-like.” For starters, habitable zone exoplanets around red dwarfs will be “tidally locked.” Tidal locking occurs because red dwarf habitable zones are very close to the cool star; so to receive the same amount of heating as our (obviously) habitable Earth, habitable exoplanets around red dwarfs need to cuddle up close. And because they are so close, the same hemisphere will always face the star, while the other hemisphere will always face away. These strange worlds are anything but “Earth-like.”

Also, Proxima Centauri is an angry little star, blasting its locale with regular flares, irradiating its interplanetary space with X-rays, UV and high-energy particles — things that will strip atmospheres from planets and drench planetary surfaces with biology-wrecking radiation. As I’ve previously written, Proxima b is likely a hellhole. And things don’t bode well for that other “habitable” exoplanet TRAPPIST-1d, either.

It’s a Trap

But let’s just say, for astrobiology-sake, that a tidally-locked world orbiting a red dwarf does host an atmosphere and an alien biosphere has managed to evolve despite these stellar challenges. This biosphere is also pretty Earth-like in that oxygen-producing lifeforms are there and the planetary atmosphere has its own ozone layer. As previously mentioned, ozone would be a pretty awesome molecule to find (in conjunction with other biosignatures). But what if no ozone is detected? Well, according to Ludmila Carone, of the Max Planck Institute for Astronomy in Germany, and her team, not finding detecting ozone doesn’t necessarily mean it’s not there, it’s just that the atmospheric dynamics of tidally-locked worlds are very different to Earth’s.

“Absence of traces of ozone in future observations does not have to mean there is no oxygen at all,” said Carone in a statement. “It might be found in different places than on Earth, or it might be very well hidden.”

Earth’s ozone is predominantly produced at the equator where sun-driven chemical reactions occur high in the atmosphere. Atmospheric flows then transport chemicals like ozone toward the poles, giving our planet a global distribution. When carrying out simulations of tidally-locked worlds, however, Carone’s team found that atmospheric flows may operate in reverse, where atmospheric flows travel from the poles to the equator. Therefore, any ozone produced at the equator will become trapped there, greatly reducing our ability to detect it.

“In principle, an exoplanet with an ozone layer that covers only the equatorial region may still be habitable,” added Carone. “Proxima b and TRAPPIST-1d orbit red dwarfs, reddish stars that emit very little harmful UV light to begin with. On the other hand, these stars can be very temperamental, and prone to violent outbursts of harmful radiation including UV.”

So the upshot is, until we have observatories powerful enough to study these hypothetical exoplanetary atmospheres — such as NASA’s James Webb Space Telescope (JWST) or the ESO’s Extremely Large Telescope (ELT) — we won’t know. But modelling the hypothetical atmospheres of these very alien worlds will help us understand what we will, or won’t, see in the not-so-distant future.

“We all knew from the beginning that the hunt for alien life will be a challenge,” said Carone. “As it turns out, we are only just scratching the surface of how difficult it really will be.”