NASA Uses Gravitational Wave Detector Prototype to Detect ‘Space Mosquito’ Splats

Artist impression of ESA LISA Pathfinder in interplanetary space (ESA)

Imagine speeding down the highway and plowing into an unfortunate swarm of mosquitoes. Now imagine that you had the ability to precisely measure the mass of each mosquito, the speed at which it was traveling and the direction it was going before it exploded over your windscreen.

Granted, the technology to accomplish that probably isn’t feasible in such an uncontrolled environment. Factors such as vibration from the car’s motor and tires on the road, plus wind and air turbulence will completely drown out any “splat” from a minuscule insect’s body, rendering any signal difficult to decipher from noise.

But move your hypothetical “car and mosquitoes” into space — as silly as that may sound — and things become a lot less noisy. And now NASA is measuring its own special kind of “mosquito splat” signal by using a rather unlikely space experiment.

The European LISA Pathfinder spacecraft is a proof of concept mission that’s currently in space, orbiting a region of gravitational stability between the Earth and the sun — called the L1 point located a million miles away. The spacecraft was launched there in late 2015 to carry out precision tests of instruments that will eventually be used in the space-based gravitational wave detector eLISA. Inside the payload is a miniaturized laser interferometer system that measures the distance between two test masses.

When launched in 2034, eLISA (which stands for Evolved Laser Interferometer Space Antenna) will see three spacecraft, orbiting the sun at the L1 point, firing ultra-precise lasers at one another as part of a space-based gravitational wave detector. Now we actually know gravitational waves exist — after the US-based Laser Interferometer Gravitational-wave Observatory (or LIGO) detected the space-time ripples created after the collisions of black holes — excitement is building that we might, one day, be able to measure other phenomena, such as the ultra-low frequency gravitational waves that were created during the Big Bang.

But the only way we can do this is to send stunningly precise interferometers into space, away from our vibration-filled atmosphere to stand a chance of detecting some of the faintest space-time rumbles in our cosmos that would otherwise be drowned out by a passing delivery truck or windy day. And LISA Pathfinder is currently out there, testing a tiny laser interferometer in a near-perfect gravitational free-fall, making the slightest of slight adjustments with its “ultra-precise micro-propulsion system.”

Although LISA Pathfinder is a test (albeit a history-making test of incredible engineering ingenuity), NASA thinks that it could actually be used as an observatory in its own right; not for hunting gravitational waves, but for detecting comet dust.

Like our mosquito-windscreen analogy, spacecraft get hit by tiny particles all the time, and LISA Pathfinder is no exception. These micrometeoroides come from eons of evaporating comets and colliding asteroids. Although measuring less than the size of a grain of sand, these tiny particles zip around interplanetary space at astonishing speeds — well over 22,000 miles per hour (that’s 22 times faster than a hyper-velocity rifle round) — and can damage spacecraft over time, slowly eroding unprotected hardware.

Therefore, it would be nice if we could create a map of regions in the solar system that contain lots of these particles so we can be better prepared to face the risk. Although models of solar system evolution help and we can estimate the distribution of these particles, they’ve only ever been measured near Earth, so it would be advantageous to find the “ground truth” and measure them directly from another, unexplored region of the solar system.

This is where LISA Pathfinder comes in.

As the spacecraft gets hit by these minuscule particles, although they are tiny, their high speed ensures they pack a measurable punch. As scientists want the test weights inside the spacecraft to be completely shielded from any external force — whether that’s radiation pressure from the sun or marauding micro-space rocks — the spacecraft has been engineered to be an ultra-precise container that carefully adjusts its orientation an exact amount to directly counter these external forces (hence the “ultra-precise micro-propulsion system”).

lisa-pathfinder
When LISA Pathfinder is struck by space dust, it compensates with its ultra-precise micro-thrusters (ESA/NASA)

This bit is pretty awesome: Whenever these tiny space particles hit the spacecraft, it compensates for the impact and that compensation is registered as a “blip” in the telemetry being beamed back to Earth. After careful analysis of the various data streams, researchers are learning a surprising amount of information about these micrometeoroides — such as their mass, speed, direction of travel and even their possible origin! — all for the ultimate goal of getting to know the tiny pieces of junk that whiz around space.

“Every time microscopic dust strikes LISA Pathfinder, its thrusters null out the small amount of momentum transferred to the spacecraft,” said Diego Janches, of NASA’s Goddard Space Flight Center in Greenbelt, Md. “We can turn that around and use the thruster firings to learn more about the impacting particles. One team’s noise becomes another team’s data.”

So, it turns out that you can precisely measure a mosquito impact on your car’s windshield — so long as that “mosquito” is a particle of space dust and your “car” is a spacecraft a million miles from Earth.

NASA put together a great video, watch it:

Aside: So it turned out that I inadvertently tested the “car-mosquito” hypothesis when driving home from Las Vegas — though some of these were a lot bigger than mosquitoes…

Mars May Have Once Been a Ringed Planet — and It Could Be Again

Mars’ moons were likely formed by a ring of debris blasted into space after the Red Planet was hit by a massive impact and, when the moon Phobos disintegrates in 70 million years, another ring may form.

mars-rings
Sunrise over Gale Crater as seen by NASA’s Mars rover Curiosity and how it might look if the Red Planet had a ring system (NASA/JPL-Caltech-MSSS, edit by Ian O’Neill)

Mars is currently known as the “Red Planet” of the solar system; its unmistakable ruddy hue is created by dust rich in iron oxide covering its landscape. But in Mars’ ancient past, it might have also been called the “Ringed Planet” of the inner solar system and, in the distant future, it may sport rings once more.

The thing is, we live in a highly dynamic solar system, where the planets may appear static over human (or even civilization) timescales, but over millions to billions of years, massive changes to planetary bodies occur frequently. And should there be a massive impact on a small rocky world — on Mars, say — these changes can be nothing short of monumental.

In new NASA-funded research published in the journal Nature Geoscience, planetary scientists have developed a new model of Mars when it was hit by a massive impact over 4 billion years ago. This catastrophic impact created a vast basin called the Borealis Basin in the planet’s northern hemisphere and the event could be part of the reason why Mars lacks a global magnetic field — it’s hypothesized that a powerful impact (or series of impacts) caused massive disruption to the Martian inner dynamo.

But the impact also blasted a huge amount of rocky debris from Mars’ crust into space, ultimately settling into a ring system, like a miniaturized rocky version of Saturn. Over time, as the debris drifted away from Mars and settled, rocky chunks would have formed under gravity and these “moonlets” would have clumped together to form larger and larger moons. So far, so good; this is how we’d expect moons to form. But there’s a catch.

Phobos as imaged by Europe’s Mars Express mission (ESA)

After forming in Mars orbit, any moon would have slowly lost orbital altitude, creeping toward the planet’s so-called Roche Limit — a region surrounding any planetary body that is a bad place for any moon to hang out. The Roche Limit is the point at which a planet’s tidal forces become too great for the structural integrity of an orbiting body. When approaching this limit, the closest edge of the moon to the planet will experience a greater tidal pull than the far side, overcoming the body’s gravity. At some point, something has to give and the moon will start to break apart.

And this is what’s going to happen to Phobos in about 70 million years. Its orbit is currently degrading and when it reaches this invisible boundary, tidal stresses will pull it apart, trailing pieces of moon around the planet, some debris falling onto the Martian surface as a series of meteorite impacts, while others remain in orbit.

The research, carried out by David Minton and Andrew Hesselbrock of Purdue University, Lafayette in Indiana, theorizes that mysterious deposits of material around Mars’ equator might have come from the breakup of ancient moons that came before Phobos and Deimos.

“You could have had kilometer-thick piles of moon sediment raining down on Mars in the early parts of the planet’s history, and there are enigmatic sedimentary deposits on Mars with no explanation as to how they got there,” said Minton. “And now it’s possible to study that material.”

According to their model, each time a moon broke apart to create a ring, the next moon would be five times smaller than its predecessor.

In short, Mars and its moon may appear to be pretty much unchanged for billions of years, but the researchers think that up to seven moon-ring cycles have occurred over the last 4.3 billion years and Mars is on the verge (on geological timescales) of acquiring rings once more. Fascinating.