This Black Hole Keeps Its Own White Dwarf ‘Pet’

The most compact star-black hole binary has been discovered, but the star seems to be perfectly happy whirling around the massive singularity twice an hour.

Credits: X-ray: NASA/CXC/University of Alberta/A.Bahramian et al.; Illustration: NASA/CXC/M.Weiss

A star in the globular cluster of 47 Tucanae is living on the edge of oblivion.

Located near a stellar-mass black hole at only 2.5 times the Earth-moon distance, the white dwarf appears to be in a stable orbit, but it’s still paying the price for being so intimate with its gravitational master. As observed by NASA’s Chandra X-ray Observatory and NuSTAR space telescope, plus the Australia Telescope Compact Array, gas is being pulled from the white dwarf, which then spirals into the black hole’s super-heated accretion disk.

47 Tucanae is located in our galaxy, around 14,800 light-years from Earth.

Eventually, the white dwarf will become so depleted of plasma that it will turn into some kind of exotic planetary-mass body or it will simply evaporate away. But one thing does appear certain, the white dwarf will remain in orbit and isn’t likely to get swallowed by the black hole whole any time soon.

“This white dwarf is so close to the black hole that material is being pulled away from the star and dumped onto a disk of matter around the black hole before falling in,” said Arash Bahramian, of the University of Alberta (Canada) and Michigan State University. “Luckily for this star, we don’t think it will follow this path into oblivion, but instead will stay in orbit.” Bahramian is the lead author of the study to be published in the journal Monthly Notices of the Royal Astronomical Society.

It was long thought that globular clusters were bad locations to find black holes, but the 2015 discovery of the binary system — called “X9” — generating quantities of radio waves inside 47 Tucanae piqued astronomers’ interest. Follow-up studies revealed fluctuating X-ray emissions with a period of around 28 minutes — the approximate orbital period of the white dwarf around the black hole.

So, how did the white dwarf become the pet of this black hole?

The leading theory is that the black hole collided with an old red giant star. In this scenario, the black hole would have quickly ripped away the bloated star’s outer layers, leaving a tiny stellar remnant — a white dwarf — in its wake. The white dwarf then became the black hole’s gravitational captive, forever trapped in its gravitational grasp. Its orbit would have become more and more compact as the system generated gravitational waves (i.e. ripples in space-time), radiating orbital energy away, shrinking its orbital distance to the configuration that it is in today.

It is now hoped that more binary systems of this kind will be found, perhaps revealing that globular clusters are in fact very good places to find black holes enslaving other stars.

Holographic Universe: Fermilab to Probe Smallest Space-Time Scales

Conceptual design of the Fermilab holometer (Fermilab)
Conceptual design of the Fermilab holometer (Fermilab)

During the hunt for the predicted ripples in space-time — known as gravitational waves — physicists stumbled across a rather puzzling phenomenon. Last year, I reported about the findings of scientists using the GEO600 experiment in Germany. Although the hi-tech piece of kit hadn’t turned up evidence for the gravitational waves it was seeking, it did turn up a lot of noise.

Before we can understand what this “noise” is, we need to understand how equipment designed to look for the space-time ripples caused by collisions between black holes and supernova explosions.

Gravitational wave detectors are incredibly sensitive to the tiniest change in distance. For example, the GEO600 experiment can detect a fluctuation of an atomic radius over a distance from the Earth to the Sun. This is achieved by firing a laser down a 600 meter long tube where it is split, reflected and directed into an interferometer. The interferometer can detect the tiny phase shifts in the two beams of light predicted to occur should a gravitational wave pass through our local volume of space. This wave is theorized to slightly change the distance between physical objects. Should GEO600 detect a phase change, it could be indicative of a slight change in distance, thus the passage of a gravitational wave.

While looking out for a gravitational wave signal, scientists at GEO600 noticed something bizarre. There was inexplicable static in the results they were gathering. After canceling out all artificial sources of the noise, they called in the help of Fermilab’s Craig Hogan to see if his expertise of the quantum world help shed light on this anomalous noise. His response was as baffling as it was mind-blowing. “It looks like GEO600 is being buffeted by the microscopic quantum convulsions of space-time,” Hogan said.

Come again?

The signal being detected by GEO600 isn’t a noise source that’s been overlooked, Hogan believes GEO600 is seeing quantum fluctuations in the fabric of space-time itself. This is where things start to get a little freaky.

According to Einstein’s view on the universe, space-time should be smooth and continuous. However, this view may need to be modified as space-time may be composed of quantum “points” if Hogan’s theory is correct. At its finest scale, we should be able to probe down the “Planck length” which measures 10-35 meters. But the GEO600 experiment detected noise at scales of less than 10-15 meters.

As it turns out, Hogan thinks that noise at these scales are caused by a holographic projection from the horizon of our universe. A good analogy is to think about how an image becomes more and more blurry or pixelated the more you zoom in on it. The projection starts off at Planck scale lengths at the Universe’s event horizon, but its projection becomes blurry in our local space-time. This hypothesis comes out of black hole research where the information that falls into a black hole is “encoded” in the black hole’s event horizon. For the holographic universe to hold true, information must be encoded in the outermost reaches of the Universe and it is projected into our 3 dimensional world.

But how can this hypothesis be tested? We need to boost the resolution of a gravitational wave detector-type of kit. Enter the “Holometer.”

Currently under construction in Fermilab, the Holometer (meaning holographic interferometer) will delve deep into this quantum realm at smaller scales than the GEO600 experiment. If Hogan’s idea is correct, the Holometer should detect this quantum noise in the fabric of space-time, throwing our whole perception of the Universe into a spin.

For more on this intriguing experiment, read the Symmety Magazine article “Hogan’s holometer: Testing the hypothesis of a holographic universe.”

Detecting Gravitational Waves on the Cheap

Forget building gravitational wave detectors costing hundreds of millions of dollars (I’m looking at you, LIGO), make use of the most accurate cosmic timekeepers instead and save a bundle.

The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) is a proposal that involves closely monitoring the regular flashes of spinning neutron stars (or pulsars) to detect very slight “shimmers” in their signal. Although the physics is crazy-complex, by tracking these shimmers over a suitably distributed number of pulsars could reveal the passage of gravitational waves.

However, there’s a problem with this plan; pulsars are notoriously tricky stellar objects, as my colleague Jennifer Ouellette points out:

The problem is that you need to closely monitor rapidly-spinning millisecond pulsars, which are (a) tough to find (only 150 have been found over nearly three decades since pulsars were first discovered), and (b) not very plentiful in the part of the night sky of interest to scientists (northern hemisphere). They tend to clump together in globular star clusters, which makes them useless for detecting gravitational waves.

However, according to results announced by the National Radio Astronomy Observatory (NRAO) at this week’s American Astronomical Society (AAS) meeting in Washington D.C., they’ve discovered 17 new pulsars with the help of NASA’s Fermi Gamma-Ray Space Telescope.

In addition to recent Fermi telescope pulsar discoveries, it would appear that the number of potential targets for NANOGrav are increasing, making a stronger case for the 10 year, $65 million project…

You have to wonder whether building the Laser Interferometer Gravitational-Wave Observatory (LIGO) was worth it (but you can’t be too careful, some terrorist organizations might want to use gravitational waves for evil, so it would be good if we detected them first).

Source: Discovery News

The Naked Singularity Recipe: Spin a Black Hole, Add Mass

naked_singularity

The event horizon of a black hole is the point of no return. If anything, even light, strays within the bounds of this gravitational trap, it will never escape. The event horizon is what makes a black hole black.

But say if there was a way to remove the event horizon, leaving just the black hole’s singularity to be “seen” by the rest of the universe? What if there is a special condition that would allow this infinitely small, yet massive point to become naked?

Generally physicists agree that this is a physical impossibility, but the mathematics says otherwise; a naked singularity could be possible.

Previously on Astroengine, one “special condition” was investigated when an extreme black hole collision was simulated by a Caltech researcher. In this case, the black hole pair was smashed together, head-on, at a velocity close to the speed of light. The gravitational waves travelling away from the collision were then modelled and characterized. It turns out that after this insanely energetic impact, 14% of the total mass was converted into gravitational wave energy and both black holes merged as one.

While this might not be very realistic, it proved to be a very useful diagnostic tool to understand the conditions after the collision of two black holes. As an interesting observation, the Caltech researchers found that although the collision was extreme, and there was a huge amount of mass-energy conversion going on (plus, I’d imagine, a rather big explosion), neither black hole lost their event horizons.

Case closed, wouldn’t you think?

Actually, another theory as to how a black hole could be stripped naked has been knocking around for some time; what if you added mass to a black hole spinning at its maximum possible rate? Could the black hole be disrupted enough to shed its event horizon?

It turns out there’s a natural braking system that prevents this from happening. As soon as mass is dropped into the black hole, it is flung out of the event horizon by the black hole’s huge centrifugal force, preventing it from coming close to the singularity.

However, Ted Jacobson and Thomas Sotiriou at the University of Maryland at College Park have now improved upon this idea, sending mass in the same direction as the spinning black hole. Only this time, the black hole isn’t spinning at its fastest possible rate, the simulation lets the orbiting matter fall into the event horizon, speeding up its spin. The result? It appears to disrupt the black hole enough to strip away the event horizon, exposing the singularity.

The most interesting thing to come of this research is that swirling matter is falling into black holes all over the universe, speeding up their spin. Jacobson and Sotiriou may have stumbled on a viable mechanism that actually allows naked singularities in the cosmos. Unless nature has found another way to prevent the cosmic censorship hypothesis from being violated that is…

Source: New Scientist

Did Gravitational Waves Ring a Bell in 1987?

Gravitational waves generated by a binary system (MIT)
Gravitational waves generated by a binary system (MIT)

The hunt for gravitational waves continue, but unfortunately all gravitational wave hunters around the world are churning up nothing. Just noise. Could it be that this consequence of Einstein’s theory of General Relativity is horribly flawed? Probably not. Still, the search for these elusive waves has foxed physicists for many years. It has even come to the point that the laser interferometers used in an attempt to detect the tiny (and I mean TINY) changes in distances (as when the gravitational wave passes through us, space-time experiences a minuscule compression or expansion) have become so precise, the director of Fermilab thinks a German-UK gravitational wave detector is starting to detect the quanta of space-time itself.

However, do you ever get the feeling that we might be trying too hard? What if gravitational waves have already been detected? Say if these notoriously difficult ripples in space-time were detected over 20 years ago without using a laser interferometer? It turns out that an overlooked scientist may have found the answer to the gravitational wave problem by using nothing more than some aluminium bars and a well-timed supernova…
Continue reading “Did Gravitational Waves Ring a Bell in 1987?”

Gravitational Waves and Gravity Waves, What’s the Difference?

grav_waves

I’ve received this question so many times, so I thought I’d post, for reference purposes, the difference between a gravitational wave and a gravity wave. Yes, they are different creatures (although many authors would have you believe otherwise).

Gravitational waves are theoretical perturbations (ripples) in space-time. Much work is going into the discovery of gravitational waves using gravitational wave detectors like the US Laser Interferometer Gravitational-Wave Observatory (LIGO) or German-British GEO600, but so far, they have proven to be very elusive. In a previous Astroengine post, there is a new theory that perhaps gravitational wave detectors have reached a limit on their precision (i.e. the quanta of space-time, leading to the holographic universe conjecture). Gravitational waves, as predicted by Einstein’s theory of general relativity, are thought to exist, but have yet to be detected. There are indirect observations of gravitational waves, from observations of the slowing period of binary stars; energy is most likely being lost through gravitational wave generation. Gravitational waves are thought to be generated also by black hole collision, pulsars and supernovae. More on Gravitational Waves…

Gravity waves are physical perturbations driven by the restoring force of gravity in a terrestrial environment. A common example of this are waves formed at an air-water boundary (i.e. the surface of the ocean). Wind creates an instability in the ocean, the restoring gravity force pulls down on the water, while the buoyancy of the water pushes it back up. A perturbation then propagates (i.e. ocean waves). Extreme examples include tsunamis and tides. Perturbations in the atmosphere can also be caused by gravity, where rising/falling air tries to regain equilibrium (after being forced over a maintain range, say), but gravity and buoyancy forces will cause it to propagate as a wave. More on Gravity Waves…

So, gravitational waves are perturbations in space-time (over universal scales). Gravity waves are perturbations in atmospheres (planetary scale). They most certainly are not the same thing.

Is the Universe a Holographic Projection?

Luke and Obi-Wan look at a 3D hologram of Leia projected by R2D2 (Star Wars)
Luke and Obi-Wan look at a 3D hologram of Leia projected by R2D2 (Star Wars)

Could our cosmos be a projection from the edge of the observable Universe?

Sounds like a silly question, but scientists are seriously taking on this idea. As it happens, a gravitational wave detector in Germany is turning up null results on the gravitational wave detection front (no surprises there), but it may have discovered something even more fundamental than a ripple in space-time. The spurious noise being detected at the GEO600 experiment has foxed physicists for some time. However, a particle physicist from the accelerator facility Fermilab has stepped in with his suspicion that the GEO600 “noise” may not be just annoying static, it might be the quantum structure of space-time itself
Continue reading “Is the Universe a Holographic Projection?”

Can Gravitational Waves be Used for Evil?

Theoretical gravitational waves generated after a black hole collision. Can we surf them?
Theoretical gravitational waves generated after a black hole collision. Can we surf them?

Gravitational waves are a theoretical consequence of a propagating energy disturbance through space-time. They are predicted by Einstein’s general relativity equations, and astrophysicists are going to great pains to try to detect the faint signature from the passage of these waves through local space. Unfortunately, even though millions of dollars have been spent on international experiments, the gravitational wave remains in equation form; there is little (direct) evidence to support their existence.

However, this doesn’t stop the US military from worrying about them and commissioned a 40-page report into whether high frequency gravitational waves could be used by an enemy. Excuse me? Gravitational waves… as a weapon?
Continue reading “Can Gravitational Waves be Used for Evil?”

No Naked Singularity After Black Hole Collision

Black holes cannot be naked... the event horizon will always be there to cover them up...
Black holes cannot be naked... the event horizon will always be there to cover them up...

You can manipulate a black hole as much as you like but you’ll never get rid of its event horizon, a new study suggests. This may sound a little odd, the event horizon is what makes the black hole, well… black. However, in the centre of a black hole, hidden deep inside the event horizon, is a singularity. A singularity is a mathematical consequence, it is also a point in space where the laws of physics do not apply. Mathematics also predicts that singularities can exist without an associated event horizon, but this means that we’d be able to physically see a black hole’s singularity. This theoretical entity is known as a “naked singularity” and physicists are at a loss to explain what one would look like.

Like any good physics experiment, an international team from the US, Germany, Portugal and Mexico have decided to simulate the most extreme situation possible in the aim of stripping a pair of black holes of their event horizons. They did this by constructing an energetic collision between two black holes travelling close to the speed of light, crashing head-on. Here’s what they discovered…
Continue reading “No Naked Singularity After Black Hole Collision”

Gravitational Wave Theory Takes Another Kick in the Teeth

Northern leg of the LIGO facility on the Hanford Reservation (LIGO)
Northern leg of the LIGO facility on the Hanford Reservation (LIGO)

Six years and nearly 400 million dollars later, the Laser Interferometer Gravitational-Wave Observatory (LIGO) still hasn’t turned up the evidence for gravitational waves. Gravitational waves are predicted by fundamental Einstein general relativity theories, but we haven’t been able to detect them. Is it because the first generation laser interferometers are not sensitive enough? Is it because LIGO needs more time to see through the cosmic noise to root out the gravitational wave signature? This is a deeply worrying non-development for physicists as a null result means that something isn’t quite right. We are certain (in theory) that these waves should be rippling through space-time (after all, massive objects are colliding and exploding all the time throughout the Universe), but if we can’t detect the things in our own cosmic back yard, something must be awry. In a recent publication, LIGO scientists have discussed the lack of evidence for gravitational waves, but remain upbeat that they can still be found…
Continue reading “Gravitational Wave Theory Takes Another Kick in the Teeth”