The Space Station Flares, Again!

I don’t usually post two identical stories within a few days of one another, but when I saw this image on SpaceWeather.com I had to comment on it. On Friday, I was captivated by the astounding astrophotography by Nicolas Biver as he tracked the space station with video camera and telescope, to capture some great detail of the manned outpost as it passed over France. With a bit of luck and a whole world of skill, Biver observed a bright space station flare.

Next up, it’s the turn of Martin Gembec. On May 2nd, he grabbed this superb trail as the station passed through the distinctive edge-on disk of our galaxy over the Czech Republic. What’s more, the station flared as its huge solar arrays reflected sunlight through Gembec’s ‘scope… right at the moment when the station travelled through the hazy starlit disk of the Milky Way.

The ISS flares as it passes through the Milky Way's disk (©Martin Gembec)
The ISS flares as it passes through the Milky Way's disk (©Martin Gembec)

We were watching a bright flyby of the space station when the ISS surprised us with a big flare in the Milky Way,” said Gembec. “At maximum, the ISS reached magnitude -8.”

A magnitude of -8 makes this flare a beast; that’s 25× brighter than Venus and 400× brighter than the star Sirius.

In the photo above, there is a rather ominous piece of kit attached to a boom reaching into the centre of the image. This is a reflection of Gembec’s Canon 30D camera (that took the picture as the ISS passed overhead) in an all-sky mirror. The mirror is in a concave shape to collect the starlight from the sky, bouncing the light into the camera lens. It acts much like a satellite dish; except it doesn’t bounce and focus radio waves into an antenna, the all-sky mirror reflects visible light and focuses it into the open camera shutter. As you can see, the results are visually stunning.

Source: Space Weather

Space Station Flare Captured On Film

I’ve been watching this short video clip over and over. It may only be two seconds long, but it is such a unique view of the space station that I find it mesmerizing. Each time the animated GIF loops, another detail seems to reveal itself.

The ISS flare, as observed by Nicolas Biver from Versailles, France, on April 28th (©Nicolas Biver)
The ISS flare, as observed by Nicolas Biver from Versailles, France, on April 28th (©Nicolas Biver)

It’s also kinda hypnotizing in a rhythmic way; the space station appears to turn and boost away into the black of space, but just before its massive solar arrays capture the sunlight, dazzling the observer with a flash.

Is it me, or are those solar panels reminiscent of the sails hoisted up the masts of canon-touting battleships before the age of iron-hulled vessels and steam-powered engines? These slightly fuzzy images could even be from the turn of the 20th Century, when one of the first movie cameras filmed a ship steering out of port.

Of course, this isn’t a wooden ocean-going ship, it’s the space station, in orbit. And the video was taken with a modern digital camera through a 16-inch Dobsonian telescope by a highly skilled amateur astronomer called Nicolas Biver from Versailles, France. The reason why the station appears to “turn” is because the perspective of the observer changes as the station flies overhead, he did a great job of tracking it.

On April 28th, Biver tracked the space station through his ‘scope. Whether it was intentional or not, he was fortunate to capture an intense flare as the space station’s solar panels reflected sunlight at his location. The resulting flare was much brighter than Venus (after the Moon, the station is the second brightest object in the night sky). Usually when I hear about observations of flares made by stuff in orbit, I usually think of Iridium flares that occur at predictable times and locations, providing a target for observers on the ground to capture a meteor-like streak across the sky. The Iridium satellite network provides a great chance for astronomers to see the reflected light when the angle between them, the satellite’s solar panels and Sun is just right.

My astronomer friend Tavi Greiner (who has just joined the Astrocast.TV team as host of Our Night Sky, be sure to check it out!) is very skilled at observing the Iridium flare-ups, and as can be seen in this image, those things are bright.

However, on the 28th, it was the space station’s turn to reflect some light for Nicolas Biver.

In March, Space Shuttle Discovery completed the construction of the ISS solar arrays during the STS-119 mission. Over a series of space walks, the solar array had its area boosted to 16,000 square feet. With this extra surface area, comes the potential for very bright flaring events.

For the chance to view the ISS and possible flaring, check out SpaceWeather.com’s Simple Satellite Tracker.

Source: Space Weather