I Dared a Mighty Thing: A Change in Career

On the one hand, I’m a little sad: I’ve stepped down as editor for the Astronomical Society of the Pacific‘s Mercury magazine and Mercury Online.

After nine issues of editing and producing Mercury, and over two-and-a-half fantastic years of working with the wonderful staff of the ASP, I was in my element doing something I loved. This was in addition to my freelance work with HowStuffWorks, Space.com, LiveScience.com, HISTORY.com, Scientific American and others, plus the science PR gigs I picked up along the way with TRIUMF and the University of Waterloo.

After the infamous Seeker.com layoffs of 2017 that gutted our original (and, frankly, awesome) Discovery News team, choosing to be a freelance science communicator was one heck of a reality check after nearly nine years of relative job security at Discovery. That said, the past three years have also been immensely rewarding, exposing me to a brilliant community of science writers from a myriad of fields, from high-energy physics to astrobiology to Earth sciences.

But when a job opportunity emerged at one of my favorite institutions last year, I couldn’t help but pay attention and apply. After convincing myself there was “no chance” that I’d land it… land it I did.

So I’ve now traded in my freelancing for a scicomm career at…

Having worked as a journalist and blogger, reporting on the incredible space robot adventures managed by the Jet Propulsion Laboratory for the past 15 years, I’ve always pondered whether my career would wind up in an institution like NASA. And I’m overjoyed that it has.

It will be a new challenge working as a media relations specialist and writer at JPL’s communications team, but I think the time had come to evolve my career to a new level while still doing the thing I love at an institution I hold in high regard. Intimately knowing the pressures, challenges, and shortfalls facing writers in science media, I hope to use everything I’ve learned over the past 15 years to effectively communicate JPL’s work to the world.

A huge thank you to everyone who has supported me over the years; I am truly grateful and I hope to make you proud as I embark on this new journey.

The Rolling Stones and NASA Team Up for Some … Martian Shenanigans?

As the Stones arrive in Los Angeles to continue their No Filter tour, there’s a space-related twist in store at the Rose Bowl Stadium.

It’s been 25 years since the Rolling Stones played at the Rose Bowl Stadium, so SoCal fans of the legendary British rock band are understandably excited. But, for space fans, there’s a little something extra, as actor Robert Downey Jr. teased in a video he posted this morning:

So, what DOES the Rolling Stones, the Rose Bowl, NASA and Robert’s star sign (steady on now) have in common? As he’s an Ares, I’m thinking it’s Mars, a planet that NASA Jet Propulsion Laboratory (which is located near the Rose Bowl) knows more than a thing or two about. And the Stones have a song called “2,000 Light Years From Home”…? OK, I’m reaching a bit on the latter (besides, Mars is much closer to Earth than 2,000 light-years), but there’s definitely something a little Martian going on. Will Curiosity beep a Rolling Stones song from Mount Sharp? Has it got something to do with the upcoming NASA Mars 2020 mission? Will the Mars InSight lander make a cameo? Who knows. But I’m all for melding science with music, so I’m excited.

And I’ll be there to cover the event, so keep an eye on @astroengine on Twitter and Instagram for updates!

I, For One, Welcome Our New Tardigrade Overlords

“One small step for (a) water bear, one giant leap for water-dwelling eight-legged segmented micro-animals.” —Teddy Tardigrade

Tardigrades are everywhere. And now they’re on the Moon [Public Domain]

Are you thinking what I’m thinking? Because if you are, you’re thinking that exposing tardigrades to high-energy cosmic rays can only mean one thing: super-tardigrades. From Live Science:

The Israeli spacecraft Beresheet crashed into the moon during a failed landing attempt on April 11. In doing so, it may have strewn the lunar surface with thousands of dehydrated tardigrades, Wired reported yesterday (Aug. 5). Beresheet was a robotic lander. Though it didn’t transport astronauts, it carried human DNA samples, along with the aforementioned tardigrades and 30 million very small digitized pages of information about human society and culture. However, it’s unknown if the archive — and the water bears — survived the explosive impact when Beresheet crashed, according to Wired.

Mindy Weisberger, Senior Writer

Well, OK, as tough as they are, it’s probably unlikely that those microscopic explorers will re-hydrate any time soon before being hit by high-energy particles that will then endow the tiny guys with Marvel-like superpowers, but it’s nice to dream.

But what are tardigrades? Let’s go back to Mindy’s Live Science article, because her explanation is simply too adorable not to reprint:

Tardigrades, also known as moss piglets, are microscopic creatures measuring between 0.002 and 0.05 inches (0.05 to 1.2 millimeters) long. They have endearingly tubby bodies and eight legs tipped with tiny “hands”; but tardigrades are just as well-known for their near-indestructibility as they are for their unbearable cuteness.

Moss piglets! Or should we now say moon piglets?

Light-hearted tardigiggles aside, it’s hard not to feel sorry for the tiny sleeping creatures. In a dehydrated state, they can remain hibernating (I’m not sure if that’s the correct term for being freeze-dried, but let’s go with hibernating) for a decade (!) while they wait for water to appear so they can go about their tardigradey business. They’ve been discovered in just about every environment on Earth, are extremely resilient and can even survive in space without a tiny spacesuit to keep them warm. In short, they’re pretty amazing. And now they’re on the Moon, which may or may not be a good thing (there’s a lot of cosmic rays up there).

Bonus: I’ll close with a short story:

When a Climate Emergency Turns Into a Human Catastrophe

There’s nothing subtle about this deadly consequence of global warming.

[Pexels]

While the recent record-breaking temperatures in Europe have grabbed the headlines, it’s worth remembering that such record-shattering heatwaves are nothing new to other regions of the planet. And many of those regions are fast approaching a grim reality: heat events that will overwhelm the body’s ability to function.

From “Heatwave: think it’s hot in Europe? The human body is already close to thermal limits elsewhere“:

Once this wetbulb temperature threshold is crossed, the air is so full of water vapour that sweat no longer evaporates. Without the means to dissipate heat, our core temperature rises, irrespective of how much water we drink, how much shade we seek, or how much rest we take. Without respite, death follows – soonest for the very young, elderly or those with pre-existing medical conditions.

Wetbulb temperatures of 35°C have not yet been widely reported, but there is some evidence that they are starting to occur in Southwest Asia. Climate change then offers the prospect that some of the most densely populated regions on Earth could pass this threshold by the end of the century, with the Persian GulfSouth Asia, and most recently the North China Plain on the front line. These regions are, together, home to billions of people.

Tom Matthews, Climate Scientist, Loughborough University, The Conversation.

Matthews goes on to warn of “grey swan” events (read his research here, via Nature Climate Change), where overwhelming heat and moisture is coupled with mass power outages triggered by anthropomorphic global warming-boosted extreme weather events to leave vast populated regions physically unable to keep cool.

While many effects of climate change may seem subtle or “something for future generations to worry about,” this extreme situation will happen sooner rather than later, and as Matthews discusses, it has probably already been experienced.

Any debate about the realities of climate change is a distant dot in the rear-view mirror, and, according to a recent study, the scientific consensus that humans are driving global warming has passed 99 percent. (In reality, the consensus that humans are causing the planet to heat up has been an overwhelming majority for years, likely decades.)

Sadly, scientific consensus isn’t enough to stymie the emissions of greenhouse gasses—if it was, the oil rigs and coal mines would have been shut down years ago. It’s the human disposition for greed and myopic politics that will turn this once ecologically-diverse planet into an increasingly inhospitable place for humans to thrive.

The pushback has been political rather than scientific. In the US, the rightwing thinktank the Competitive Enterprise Institute (CEI) is reportedly putting pressure on Nasa to remove a reference to the 97% study from its webpage. The CEI has received event funding from the American Fuel and Petrochemical Manufacturers and Charles Koch Institute, which have much to lose from a transition to a low-carbon economy.

Johnathan Watts, The Guardian

Policy makers who claim to be “skeptical” about the overwhelming scientific consensus that humans are causing global warming aren’t necessarily uneducated fools. They simply do not care. Democracy has long been hijacked by special interest groups and corporations that care little about the future health of the environment and society. In the long run, their belligerent self-interest will undercut their bottom line. It won’t be long until our carbon-driven economy will collapse under the weight of relentless impacts caused by the continued burning of fossil fuels.

It’s the ultimate self-own, and it’s a shame they’ll take us with them.

To Explore Space, Earth’s Environment Will Take One for the Team

The space exploration industry is booming, which is an encouraging sign for our future. But some pundits are arguing that rocket launches will exacerbate global warming.

A time-lapse photograph of a SpaceX launch at night [SpaceX]

When so many people, especially those in charge, seem so cavalier about the impact of global warming and climate change on our planet, it’s refreshing to see a perspective that worries about what we’re doing to our environment. Unfortunately, when that perspective focuses on a tiny contributor and seems to lack the understanding of what it criticizes, it needs to be called out. A number of pundits looked at the exploding private space industry and have grown concerned that rocket launches we will inject too much greenhouse gas into the atmosphere, exacerbating global warming and the attendant problems that come with it. And while it’s true that rocket fuel is far from clean, releasing plenty of unwanted chemicals into the atmosphere as it burns, we have to keep the big picture in mind.

When it comes to launching things into space, there aren’t that many alternatives to rockets and their toxic fuel. You can’t use an ion drive or any of the other seemingly sci-fi but realistic propulsion methods for traveling to other worlds and solar systems. Earth’s gravity and atmospheric pressure at sea level are very different from the vacuum of the cosmos where the tiniest push can really add up in the long term. The only way to get tons of supplies and machinery into orbit and beyond is through controlled explosions harnessed by rockets. There is simply no other way currently feasible, and there won’t be until we figure out how to build giant electromagnetic railguns, or how to harness antimatter, although that would come with a high risk of exposure to gamma radiation.

We could conceivably launch human crews in single stage to orbit planes, but their spacecraft are going to have to rely on good old-fashioned rocketry. That said, however, the plan is not to simply keep launching things from earth with no regard to the pollution thousands of rockets launched every year would cause. Launching payloads from Earth is expensive, both financially and energetically, so ideally, we would want to launch them from somewhere else. We would want to take off from the Moon or asteroids, somewhere where the gravity is in a fraction of what it is on our world, and we could use the same engines to propel anywhere between six and a hundred times the cargo. This is what we mean by infrastructure for space exploration. Forget about turning Earth into a giant launchpad. The ideal gateway to the rest of the solar system is the Moon.

Lacking an atmosphere, the Moon doesn’t particularly care how toxic the fuel is or how much greenhouse gas each launch produces. For all intents and purposes, the moon is a harsh and the radioactive wilderness with no environment to conserve. The same goes for asteroids we want to use as refueling stations, which are simply chunks of radiation-battered rock and metal floating through space we could harvest for fuel and building materials by using, of all things, steam powered asteroid-hopping robots. So, while it’s understandable to worry about the carbon footprint of everything that we do, considering the current inaction by so many on pressing climate issues, it’s important to keep things in perspective when doing so. If global warming continues apace, it won’t be thanks to rockets. It will be thanks to stubborn clinging to fossil fuels across the world and pollution from heavy industry and manufacturing.

If we were to push for serious investments in green energy, which is thankfully something that’s already happening, rocket launchers wouldn’t even be a blip on our carbon radar. Before we start asking ourselves how much carbon dioxide a SpaceX Falcon Heavy releases, and how many greenhouse gases it saves by reusing its booster cores, we need to ask ourselves how many coal plants are still powering cities and why, and what it will take to switch them over to clean, renewable sources. Otherwise, we’re doing the equivalent of trying to pay off the national debt by scrimping and saving on how many pencils public school teachers are allowed to get from their school districts. Which would be a funny analogy if it wasn’t true.

[This article originally appeared on World of Weird Things]

Unmasking a Monster: A ‘Stunning Confirmation’ of Black Hole Theory

The Event Horizon Telescope’s image of M87* is so good that theorists thought it was too good to be true.

This feature was originally published on April 10 by the University of Waterloo as a part of their public release about Professor Avery Broderick’s theoretical work that led to the first ever image of a black hole. Written by Ian O’Neill, edited by media relations manager Chris Wilson-Smith.

When Avery Broderick initially saw the first image from the Event Horizon Telescope (EHT), he thought it was too good to be true. After playing a critical role in the project since its inception in 2005, Broderick was staring at his ultimate quarry: a picture-perfect observation of a supermassive black hole in another galaxy. Not only was this first image sweet reward for the dedicated global effort to make the impossible possible, it was a beautiful confirmation of Broderick’s predictions and the 100-year-old theories of gravity they are based upon.

“It turns out our predictions were stunningly close; we were spot-on,” said Broderick. “I think this is a stunning confirmation that we are at least on the right track of understanding how these objects work.”

For Broderick, a professor at University of Waterloo and the Perimeter Institute for Theoretical Physics, and a key member of the international Event Horizon Telescope Collaboration, this wasn’t just an image that proved his theoretical models correct, it was the beginning of a historic journey into the unknown, with potentially revolutionary consequences that will reverberate through science and society as a whole.

Making the Impossible Possible

On April 10, the global collaboration showcased the first image of the supermassive black hole in the core of the massive elliptical galaxy M87. The image shows a ghostly bright crescent surrounding a dark disk, a feature that surrounds the most gravitationally extreme region known: a black hole’s event horizon. This first image isn’t only proof that humanity now has the ability to probe right up to the edge of an event horizon, it’s a promise that future observations will help us better understand how supermassive black holes work, how they drive the evolution of their galactic hosts and, possibly, reveal new physics by finally unmasking the true nature of gravity itself.

To Broderick, who has always been fascinated by the undiscovered, it’s mysteries like these that give him the passion to understand how the universe works – an adventure that is an important part of the human story.

“Black holes are the most extreme environments in the universe, so naturally I was hooked for as long as I can remember,” he said. “Nowhere in the universe is there a more perfect laboratory for pushing back the boundaries of our knowledge of gravity’s nature. That makes black holes irresistible.”

Few scientists would debate the reality of black holes, but the first image of M87’s supermassive black hole is definitive proof that these monsters, and their associated event horizons, exist. “These things are real, along with all the consequences for physics,” he said.

In the years preceding this announcement, Broderick and his EHT colleagues developed simulations that modeled what the Earth-spanning virtual telescope might see. And, on comparing his models with the first EHT image, Broderick was amazed.

“That first image was so good that I thought it was a test – it had to be a trial run,” said Broderick, “It’s a beautiful ring shape that’s exactly the right size. In fact, it looks very similar to the images (of theoretical models) we included in proposals for the EHT.”

The ring shape Broderick describes is the bright emissions from the hot gasses immediately surrounding the colossal maw of a supermassive black hole’s event horizon. Located inside the massive elliptical galaxy M87 in the constellation of Virgo, this gargantuan object has a mass of six-and-a-half-billion Suns and measures nearly half a light-day across. This may sound big, but because it’s located 55-million light-years away, it’s far too distant for any single telescope to photograph.

The EHT, however, is a network of many radio telescopes around the world, from the Atacama Desert to the South Pole. By working together – via a method known as very long-baseline interferometry – they create a virtual observatory as wide as our planet and, after two decades of development, the international collaboration has accomplished the impossible by resolving the event horizon around M87’s supermassive black hole.

“This is a project that has a wide breadth of collaboration, geographically – you can’t build an Earth-sized telescope without an Earth-sized collaboration! – but also in expertise, from the engineers who build these advanced telescopes, to the astronomers who work on the day-to-day and the theorists who inspire their observations,” said Broderick.

A Stunning Confirmation

The event horizon is a region surrounding a black hole where the known physics of our universe ends abruptly. Nothing, not even light, can escape a black hole’s incredible gravity, with the event horizon being the ultimate point of no return. What lies beyond the event horizon is open to debate, but one thing is for certain: if you fall inside, you’re not getting out.

Over a century ago, Albert Einstein formulated his theory of general relativity, a theoretical framework that underpins how our universe works, including how event horizons should look. Black holes are the embodiment of general relativity at its most extreme, and event horizons are a manifestation of where space-time itself caves in on itself.

“Event horizons are the end of the safe space of the universe,” said Broderick, “they should have ‘mind the gap’ or ‘mind the horizon’ signs around them!”

Physics has some key unresolved problems that may be answered by the EHT, one of which is the nature of gravity itself, added Broderick. Simply put, gravity doesn’t jibe with our current understanding of other fundamental forces and particles that underpin all matter in the universe. By stress-testing Einstein’s theories right at the edge of a black hole’s event horizon, the EHT will provide physicists with the ultimate laboratory in which to better understand gravity, the force that drives the formation of stars, planets, and the evolution of our universe.

Once we truly understand this fundamental force, the impact could be revolutionary, said Broderick. “Gravity is the key scientific problem facing physics today, and no one fully understands the ramifications of what understanding gravity fully are going to be.”

On an astronomical level, supermassive black holes are intrinsically linked with the evolution of the galaxies they inhabit, but how they form and evolve together is another outstanding mystery.

Supermassive black holes are also the purveyors of creation and doom – they have the power to kick-start star formation as well as preventing stars from forming at all – a dichotomy that astronomers hope to use the EHT to understand.

“These incredibly massive things lie at the centers of galaxies and rule their fates,” said Broderick. “Supermassive black holes are the engines behind active galactic nuclei and distant quasars, the most energetic objects known. Now we’re seeing what they look like, up close, for the first time.”

All galaxies are thought to contain a supermassive black hole, including our own galaxy, the Milky Way. Called Sagittarius A* (or Sgr A*), our supermassive black hole is 2,000 times less massive than the one in M87, but it’s 2,000 times closer – at a distance of 25,000 light-years. This means that the EHT can image both Sgr A* and M87 as they appear approximately the same size in the sky, a situation that is an incredible stroke of luck.

“If you had to choose two sources, these two would be it,” said Broderick. Whereas M87’s supermassive black hole is one of the biggest known and a “real mover and shaker,” Sgr A* is much less massive and considered to be an “everyman of black holes,” he said.

“We had to start somewhere. M87 represents the first end-to-end exercise of the entire EHT collaboration – from data taking to data interpretation,” said Broderick. “The next exercise will happen considerably faster. This is only the beginning.”

Voyage of Discovery

As the scientific benefits of observing supermassive black holes are becoming clear, Broderick pointed out that the impact on society could also be seismic.

“I would hope that an image like this will galvanize a sense of exploration; an exploration of the mind and that of the universe,” he said. “If we can excite people, inspire them to embark on a voyage of discovery in this new EHT era of observational black hole physics, I can only imagine that it will have profound consequences for humanity moving forward.

“I feel incredibly privileged to be a part of this story of exploration – the human story of understanding the universe we inhabit and using that understanding to improve our lives.”

Read more: “First image of black hole captured,” Univ. of Waterloo, by Ian O’Neill

Ten Years Later: The Cosmos Remembers Brian the Bat

Gather ’round the campfire kids, it’s time to tell the sad story of a brave bat named Brian.

On March 15, 2009, we watched in terror as Brian, a Florida free-tailed bat, stubbornly remained attached to Space Shuttle Discovery’s external fuel tank moments before launch (left). On Thursday, ten years later, the European Southern Observatory released a stunning photo feature of the Bat Nebula (right). A coincidence? I think not. [NASA/ESO]

On March 15, 2009, Twitter was days away from its third birthday, Ashton Kutcher was one month away from becoming the first tweep to reach one million followers, and a community of space enthusiasts habitually live-tweeted the final space shuttle launches from the comfort of their homes. They were simpler times.

Wikipedia recognizes Brian’s sacrifice.

One launch, however, became infamous — nay, historic — not for the fact it was one of the last handful of launches of NASA’s shuttle program, but because there was a tiny stowaway attached to the shuttle’s bulbous orange external fuel tank minutes before ignition.

That stowaway was an ill-fated bat named “Brian.” And “he” became a legend overnight.

A Legend Is Born

During the countdown to the launch of STS-119, as we watched in anticipation of the successful start of Space Shuttle Discovery’s International Space Station (ISS) servicing mission, something seemed amiss at Discovery’s launch pad. At the time, the assumption was that a fruit bat (a common species in Florida) had mistakenly thought the orange external fuel tank of the shuttle was a tree to latch itself onto. Follow-up investigations identified the bat as a free-tailed bat and, though its intentions were unclear, zoologists posited that the unfortunate critter may have broken its wing. This would explain why it didn’t fly away when the shuttle’s boosters ignited, carrying the bat to the heavens — literally and metaphorically.

No one really knows how long the bat held on for, but some creative-thinkers hypothesized that the bat remained attached for the duration, making it into space. I don’t think I have to explain why this didn’t happen — it was more likely booted from the fuel tank in the first seconds of launch enduring a fiery death via rocket booster exhaust — but it was a poetic thought. Regardless of the bat’s fate, it’s ultimate sacrifice made this routine launch special. What was “just another” live-tweeted shuttle launch, became a spectacle that rapidly evolved into an international news story. That bat was special.

And that bat’s name was Brian.

Why “Brian”? A bit of background: For some personal reason that I cannot fathom, I like to name things “Brian.” I’ve always done it. The squirrel that lives in my backyard? Brian. An interesting and unnamed rock on the surface of Mars? Brian. My first car? Brian. That gopher that demolished my newly-planted garden of impatiens in 2011? Brian. A random free-tailed bat hanging off the shuttle’s external fuel tank? Brian. There’s no reason and no logic behind this, Brian just seems to fit. It’s a personal mystery.

So, when lightheartedly tweeting about the bat on March 15, 2009, I called the bat Brian and the name stuck. I had no idea about its gender, and it didn’t have a nametag, but that bat was a Brian alright. Suddenly, other space enthusiasts following the launch called him Brian and, for reasons I have yet to understand ten years later, in those minutes before launch, “Brian the Bat” went viral and suddenly everyone was personally invested in that “routine” space launch. Yes, there were billions of dollars of hardware on that launchpad with seven brave astronauts on board, but everyone was talking about Brian who was shivering on the side of the vehicle, a place that no living creature should have been.

Was Brian confused? Was he frozen to the cold tank? Would he fly away in the nick of time? No one knew, but the clock was ticking and the commentator on the NASA live video stream seemed confident that, as the boosters began their ignition sequence, the bat would be scared by the vibrations and fly to safety.

For reasons known only to Brian, he remained attached. And as the boosters roared to life, he held tight. As the plume of smoke and steam enveloped Kennedy Space Center Launch Complex 39, I sat with the computer screen nearly pressed to my nose, seeking out the dark pixels of Brian in the place where he was last seen. But the resolution was too low and Brian’s fate was unknown. (Days later, NASA analysts reviewed infrared imagery from the launch, revealing two very sad facts. 1) Brian was warm while attached to the fuel tank, so he hadn’t frozen to death and was alive up to launch, and 2) he remained in place when Discovery lifted off.)

As the adrenaline ebbed and Space Shuttle Discovery soared into the atmosphere, solid rocket boosters separating and tumbling back to Earth, the sad reality crept in. Brian was, in all likelihood, toast.

But his legacy would live on.

Assuming that little space-launch chapter was over, I wrote a summary about Brian’s adventures for Universe Today and on Astroengine with the assumption that Brian would be soon lost to the annals of shuttle-era history. Little did I know, however, that Norwegian journalist Geir Barstein was paying close attention…

Brian makes waves in the Norwegian press on March 16, 2009. Read the full article here. [Dagbladet]

Then, a couple of days later, the new spread to the UK tabloid press


Brian landed as a science headline in the Mail Online on March 19, 2009. Read the full article here. [Mail Online]

Brian also made appearances in The Sun newspaper (but the article has since disappeared) and other smaller publications, and I participated in a number of radio shows devoted to that now-famous shuttle launch.

Not only was the whole event a poignant one, it also made me realize something about the power of social media. In all my years covering space stories, particularly when I was a producer at Discovery News (now called “Seeker”), shuttle launches would receive very little attention. Apart from a few outliers, such as the final shuttle launch, the articles I’d publish about one of NASA’s most significant programs would receive very little readership. The routine nature of these launches meant that, unless you were at Cape Canaveral, interest in seeing shuttles launch into space was lukewarm at best. As a space enthusiast, I was frustrated. Every launch in my eyes was special and certainly not “routine.”

Brian, however, made me realize by accident that you have to seek out the unique thing about that one launch that will hook readers to that story. Granted, not all launches have a “Brian the Bat” moment, but that doesn’t mean they’re not special.

Remember the Lunar Atmosphere and Dust Environment Explorer (LADEE) launch? Thought not. But do you remember Frank the Frog? Probably:

NASA’s LADEE launch also had a “Brian the Bat” moment in 2013. Read more about it in my Discovery News analysis. [NASA]

Eerie Timing, ESO

Not only is it the TEN YEAR anniversary tomorrow (Friday) of when Brian met his maker, today the European Southern Observatory (ESO) released this stunning observation of the Bat Nebula, a reflection nebula that contains baby stars being birthed in a stellar nursery. Yes, I know, eerie, right?

Text from ESO: “Hidden in one of the darkest corners of the Orion constellation, this Cosmic Bat is spreading its hazy wings through interstellar space two thousand light-years away. It is illuminated by the young stars nestled in its core — despite being shrouded by opaque clouds of dust, their bright rays still illuminate the nebula. Too dim to be discerned by the naked eye, NGC 1788 reveals its soft colors to ESO’s Very Large Telescope in this image — the most detailed to date.” [ESO]

I like to think that the cosmos is doing Brian a solid by commemorating that brave little bat’s ultimate sacrifice.

The event may have been a footnote in humanity’s quest to explore our universe, but I truly believe that the viral social media (and then mainstream media) attention Brian whipped up created a buzz around a launch that may not have otherwise made an impact.

As a science communicator, I’m always on the lookout for interesting hooks to stories that wouldn’t otherwise be of interest, and on March 15, 2009, Brian was that hook — who knows what kind of impact that little free-tailed bat had on viewers who wouldn’t have otherwise been paying attention to one of the biggest endeavors in human exploration history.

So, tomorrow, on March 15, 2019, raise a drink to Brian’s legacy. He will live on in the spirit he inspired when he left our planet attached to the space shuttle’s external fuel tank.

Humanity Gains Another Foothold in Space

The private spaceflight company SpaceX has done it again, and this latest achievement is an important one.

Crew Dragon berthed with the space station at 2:51 a.m. PT [NASA]

We space writers are very familiar with Elon Musk’s human spaceflight dreams that can be encapsulated in his well-known goal to “make humanity multi-planetary,” starting with a Mars settlement. And today, that goal took another step closer to reality.

I’ve been following Musk’s rocket adventures ever since his early days of exploding single-engine rockets in the South Pacific. Back then, Musk was a “dreamer” and more than a little eccentric. His eccentricities are well documented, but the world’s best known billionaire-entrepreneur is a dreamer no more. The first successful flight of a Falcon 1 happened on Sept. 28, 2008. (You can read my 2008 Space Lifestyle Magazine article on that topic, page 36) A little over a decade later, the Falcon 1 has rapidly evolved into the reusable Falcon 9 workhorse and the Falcon Heavy and, with key partnerships with NASA and companies that need to get stuff into orbit cheaply, SpaceX has developed the human-rated Dragon spacecraft to ultimately get astronauts to the space station, and beyond.

After proving itself in the cargo-delivery arena, the Dragon has now won its human-spaceflight wings: an (uncrewed) Crew Dragon is now attached to the International Space Station’s Harmony module and the outpost’s astronauts have entered the vehicle.

Building a commercially-viable space infrastructure is paramount if humanity is to truly become multi-planetary, and through partnerships between private business and government contracts, today’s achievement is proof that this model can work.

Too often, governments lack the long-term vision for human space exploration, instead plowing money into bloated, politically motivated, and ultimately doomed federally-funded projects. SpaceX may be an exhausting company to work for, but its ultimate mission is crystal clear. It’s not a satellite-launching company, it’s just doing that to build funds to do the Next Big Thing. Dragon’s autonomous berthing with the space station is That Big Thing that will drive more investment into getting stuff beyond Earth orbit.

Musk’s interim target — before getting humans to Mars — is the moon, to create a permanently-crewed lunar base. How that will shape up remains to be seen, but if there’s one thing I’ve learnt from following his dreams of getting into space on a reusable spaceflight infrastructure, it’s don’t bet against SpaceX and Elon Musk’s “eccentricities.”

Home Is Where the Mars Rover Is

Now that Opportunity’s mission is complete, many wistfully lament about “bringing our robot home.” There’s just one problem: it’s already home.

A rendering of Opportunity on Mars [NASA/JPL-Caltech]

I am fascinated with how we anthropomorphize robots, particularly space robots. We call them “brave,” “pioneers” and even give them genders — usually a “she.” We get emotional when they reach the end of their missions, saying they’ve “died” or, as I like to say, “gone to Silicon Heaven.” But these robots are, for all intents and purposes, tools. Sure, they expand the reach of our senses, allowing us to see strange new worlds and parts of the universe where humans fear to tread, but they’re an assembly of electronics, metal, plastic, sensors, transmitters, wheels and solar panels. They don’t have emotions. They don’t breathe. They don’t philosophize about the incredible feats of exploration they are undertaking. They don’t have genders.

Still, we fall in love. When watching Curiosity land on Mars from NASA’s Jet Propulsion Laboratory, I teared up, full of joy that the six-wheeled hulk of a rover — that I’d met personally in JPL’s clean room a couple of years before — had safely landed on the Red Planet. After watching NASA’s InSight lander touch down on Elysium Planitia, again via JPL’s media room last year, there it was again, I was in love. I’m already anthropomorphizing the heck out of that mission, seeing InSight’s landing as another “heartbeat” on Mars. When the European Rosetta mission found Philae lying on its side like a discarded child’s toy on the surface of comet 67P/Churyumov–Gerasimenko, I jumped up from my desk with joy. When Cassini’s mission at Saturn ended in 2017, I was miserable. When the Chinese rover Yutu rolled off its lander in 2014, I realized I was cheering the robot on. When Spirit got stuck in a sand trap in Gusev Crater, I set up a Google alert for any and all news on the recovery efforts.

These emotions aren’t just for the exciting science and engineering strides humanity makes, there’s a certain inspirational character that each robot brings. Undoubtedly, this character naturally emerges from the wonderful scientists and engineers who design and build these amazing machines, and the social media managers who often “speak” for their robots in first person. But if you strip away the science, the technology and the people who build them, we still personalize our beloved robots, giving them their own character and creating a cartoon personality. I believe that’s a beautiful trait in the human condition (except a few flawed cultural and stereotypical missteps) and can be used to great effect to captivate the general public with the science that these robots do.

Opportunity’s landing site inside Eagle crater [NASA/JPL-Caltech]

So there’s no great surprise about the outpouring of emotion for last week’s announcement that NASA called off the communications efforts with Mars Exploration Rover Opportunity. This kick-ass robot traveled 28 miles and lasted nearly 15 years, until a global dust storm in early 2018 starved it of sunlight. It landed on Mars way back in 2004, with its twin, Spirit, beginning its Martian reign with a hole-in-one, literally — after bouncing and rolling across the regolith after its entry and descent, encased inside a genius airbag system, it plopped inside the tiny Eagle crater. We’ve collectively lived through Opportunity’s adventures and the groundbreaking science it has done. There’s a huge number of terrific robot obituaries out there, so I won’t duplicate those efforts here. There is, however, a recurring sentiment that is somewhat misplaced, though entirely innocent.

Opportunity — like Spirit and all the Mars rovers and landers that have come and gone — died at home.

This may sound like an odd statement, but there seems to be this fascination with “returning” our space robots to Earth. I’ve seen cartoons of the Dr Who traveling through time to “rescue” Opportunity. People have argued for the case of future Mars astronauts returning these artifacts to terrestrial museums. There’s that touching XKCD cartoon of Spirit being “stranded” on Mars after NASA declared it lost in 2010, that is being resurfaced for Opportunity. We want our dusty Mars rover back!

Dusty rover [NASA/JPL-Caltech]

It’s understandable, that rover has been continuously exploring Mars for a decade and a half, many of its fans, including myself, could check in on Opportunity’s adventures daily, browsing the latest batch of raw images that were uploaded to the NASA servers. We love that thing. In the tradition of military service members who die abroad, we go to great efforts to bring their bodies home so they can repatriated; we want to repatriate our science service member back to Earth.

But Opportunity is a robot that was designed for Mars. Every single design consideration took the Martian environment into account. The Red Planet’s gravity is roughly 1/3rd that of Earth, so the weight on its actuators and chassis are 2/3rds less than what they’d experience on our planet. Its motors are too under powered to reliably drive the robot forward on Earth. On Mars, they’re perfect. Granted, the mass of the Mars Exploration Rovers (approximately 185 kg) are a lot less than their supersized cousin, Curiosity (899 kg), but if Opportunity and Spirit had a 90-day mission exploring the dunes of the Californian Mojave Desert, I’m betting they wouldn’t get very far; they would be under-powered and grind to a halt. They’d also likely overheat as they were designed to withstand the incredibly low temperatures on the Martian surface.

The robots we send to Mars are undeniably Martian. If we’re going to anthropomorphize these beautiful machines, let’s think about what they’d want. I’m guessing they’d want to stay on that dusty terrain and not return to the alien place where they were constructed. And, in doing so, they become the first generation of archaeological sites on the Red Planet that, one day, the first biological Martians will visit.

A Martian’s shadow [NASA/JPL-Caltech]