Cassini’s Legacy: Enigmatic Enceladus Will Inspire Us for Generations to Come

pia21346-1041
NASA’s Cassini mission captured this view of icy moon Enceladus on March 29, 2017. The crescent is lit by the sun, but the near-side green hue is reflected sunlight bouncing off Saturn’s atmosphere — a.k.a. “Saturn glow” (NASA/JPL-Caltech/Space Science Institute)

The day before Cassini plunged into Saturn’s atmosphere, dramatically ending 13 years of Saturn exploration (and nearly two decades in space), I was sitting on a bench outside the Von Karman Visitor Center on the NASA Jet Propulsion Laboratory campus in La Cañada Flintridge with Linda Spilker, who served as the mission’s project scientist since before Cassini was launched.

What was supposed to be a quick 5-minute chat before lunch, turned into a wonderful 20-minute discussion about Cassini’s discoveries. But it was also about what the spacecraft meant to Spilker and how other space missions have shaped her life.

“I feel very fortunate to be involved with Cassini since the very beginning … and just to be there, to be one of the first to see SOI [Saturn Orbital Insertion] with those first incredible ring pictures,” she told me. “I love being an explorer. I worked on the Voyager mission during the flybys of Jupiter, Saturn, Uranus and Neptune; that sort of whet my appetite and made me want more, to become an explorer to go to the Saturn system.”

Spilker especially loved studying Saturn’s rings, not only from a scientific perspective, but also because they are so beautiful, she continued. “It’s been a heartwarming experience,” she said.

LastRingPortrait_Cassini_1080
Before Cassini crashed into Saturn’s atmosphere, it took a series of observations that created this mosaic of Saturn and its rings. Cassini plunged into the Saturnian atmosphere on Sept. 15 (NASA/JPL-Caltech/Space Science Institute/Mindaugas Macijauskas)

But Cassini’s “legacy discovery,” said Spilker, was the revelation that the tiny icy moon of Enceladus is active, venting water vapor into space from powerful geysers emerging from the moon’s “tiger stripes” — four long fissures in the moon’s south pole. After multiple observations of these geysers and direct sampling of the water particles during flybys, Cassini deduced that the icy space marble hides a warm, salty ocean.

“What Cassini will be remembered for — its legacy discovery — will be the geysers coming from Enceladus with the ocean with the potential for life. It’s a paradigm shift.” — Linda J. Spilker, Cassini project scientist, NASA Jet Propulsion Laboratory (JPL), Sept. 14, 2017.

Alongside Jupiter’s moon Europa, Enceladus has become a prime destination for future explorations of life beyond Earth. Its subsurface ocean contains all the ingredients for life as we know it and Cassini was the mission that inadvertently discovered its biological potential. So now we know about this potential, Spilker is keen to see a dedicated life-hunting mission that could go to Enceladus, perhaps even landing on the surface to return samples to Earth.

cassini-geysers
Artist impression of Cassini flying through Enceladus’ water plumes venting from the moon’s south pole (NASA/JPL-Caltech)

As Enceladus is much smaller and less massive than Europa, its gravity is lower, meaning that landing on the surface is an easier task. Also, the radiation surrounding Saturn is much less aggressive than Jupiter’s radiation belts, meaning less radiation shielding is needed for spacecraft going to Saturn’s moons.

But if we ever send a surface mission to Enceladus (or any of the icy moons in the outer solar system), the planetary protection requirements will be extreme.

“If any life were found on these moons, it would be microbial,” said Larry Soderblom, an interdisciplinary scientist on the Cassini mission. “Some [terrestrial] bacteria are very resilient and can survive in hot acid-reducing environments. They can be tenacious. We have to make sure we don’t leave any of these kinds of Earthly bacteria on these promising moons.”

Soderblom has a unique perspective on solar system exploration. His career spans a huge number of NASA missions since the 1960’s, including Mariner 6, 7, 9, Viking, Voyager, Galileo, Magellan, Mars Pathfinder, the Mars Exploration Rovers, Deep Space 1, to name a few. While chatting to me under the shade of a tree on the JPL campus, he pointed out that the outer solar system was seen as a very different place over half a century ago.

“When I started to explore the solar system as a young guy just out of graduate school, our minds-eye view of the outer solar system was pretty bleak,” he remembered. “We expected lifeless, dead, battered moons with no geologic activity.”

After being involved with many outer solar system missions, this view has radically changed. Not only have we discovered entire oceans on Enceladus and Europa, there’s active volcanoes on Jupiter’s tortured moon Io, an atmosphere on Titan sporting its own methane cycle and surface lakes of methane and ethane. Other moons show hints of extensive subsurface oceans too, including distant Triton, a moon of Neptune. When NASA’s New Horizons flew past Pluto in 2015, the robotic spacecraft didn’t see a barren, dull rock as all the artistic impressions that came before seemed to suggest. The dwarf planet is a surprisingly dynamic place with a rich geologic history.

pia12713
With a diameter of only 313 miles, tiny Enceladus is a surprising powerhouse of internal activity. Subsurface oceans are heated through tidal interactions with Saturn (and, possibly, radioactivity in its rocky core), forcing water through its south pole fissures (NASA/JPL-Caltech)

Sending our robotic emissaries to these distant and unforgiving places has revolutionized our understanding of the solar system and our place in it. Rather than the gas and ice giant moons being dull, barren and static, our exploration has revealed a rich bounty of geologic variety. Not only that, we’re almost spoilt for choices for our next giant leap of scientific discovery.

Missions like Cassini are essential for science. Before that spacecraft entered Saturn orbit 13 years ago, we had a very limited understanding of what the Saturnian system was all about. Now we can confidently say that there’s a tiny moon there with incredible biological potential — Enceladus truly is Cassini’s legacy discovery that will keep our imaginations alive until we land on the ice to explore its alien ocean.

For more on my trip to JPL, read my two HowStuffWorks articles:

Why Cassini Crashed: Protecting Icy Moon Enceladus at All Costs

What Epic Space Missions Like Cassini Teach Us About Ourselves

Advertisements

Repeating “Fast Radio Bursts” Detected in Another Galaxy — Probably Not Aliens, Interesting Anyway

green-bank
The Green Bank Radio Telescope (NRAO)

A radio astronomy project intended to find signals from intelligent aliens has announced the intriguing detections of “repeating” fast radio bursts (FRBs) from a single source in a galaxy three billion light-years distant. This is definitely an exciting development, but probably not for the reasons you think.

The ambitious $100 million Breakthrough Listen project aims to scan a million stars in our galaxy and dozens of nearby galaxies across radio frequencies and visible light in hopes of discovering a bona fide artificial signal that could be attributed to an advanced alien civilization. But in its quest, Breakthrough Listen has studied the signals emanating from FRB 121102 — and recorded 15 bursts — to better understand what might be causing it.

FRBs remain a mystery. First detected by the Parkes Radio Telescope in Australia, these very brief bursts of radio emissions seemed to erupt from random locations in the sky. But the same location never produced another FRB, making these bizarre events very difficult to understand and impossible to track.

Hypotheses ranged from powerful bursts of energy from supernovae to active galactic nuclei to (you guessed it) aliens, but until FRB 121102 repeated itself in 2015, several of these hypotheses could be ruled out. Supernovae, after all, only have to happen once — this FRB source is repeating, possibly hinting at a periodic energetic phenomenon we don’t yet understand. Also, because FRB 121102 is a repeater, in 2016 astronomers could trace back the location of its source to a dwarf galaxy 3 billion light-years from Earth.

Now we ponder the question: What in the universe generates powerful short bursts of radio emissions from inside a dwarf galaxy, repeatedly?

Using the Green Bank Telescope in the West Virginia, scientists of Breakthrough Listen recorded 400 TB of data over a five hour period on Aug. 26. In these data, 15 FRBs were recorded across the 4 to 8 GHz radio frequency band. The researchers noted the characteristic frequency dispersion of these FRBs, caused by the signal traveling through gas between us and the source.

Now that we have dedicated and extremely detailed measurements of this set of FRBs, astrophysicists can get to work trying to understand what natural phenomenon is generating these bursts. This is the story so far, but as we’re talking radio emissions, mysteries and a SETI project, aliens are never far away…

Probably Not Aliens

It may be exciting to talk about the possibility of aliens generating this signal — as a means of communication or, possibly, transportation via beamed energy — but that avenue of speculation is just that: speculation. But to speculate is understandable. FRBs are very mysterious and, so far, astrophysicists don’t have a solid answer.

But this mystery isn’t without precedent.

In 1967, astronomers Jocelyn Bell Burnell and Antony Hewish detected strange radio pulses emanating from a point in the sky during a quasar survey to study interplanetary scintillation (IPS). The mysterious pulses had an unnaturally precise period of 1.33 seconds. At the time, nothing like it had been recorded and the researchers were having a hard time explaining the observations. But in the back of their minds, they speculated that, however unlikely, the signal might be produced by an alien intelligence.

During a dinner speech in 1977, Bell Burnell recalled the conundrum they faced:

“We did not really believe that we had picked up signals from another civilization, but obviously the idea had crossed our minds and we had no proof that it was an entirely natural radio emission. It is an interesting problem – if one thinks one may have detected life elsewhere in the universe how does one announce the results responsibly? Who does one tell first? We did not solve the problem that afternoon, and I went home that evening very cross here was I trying to get a Ph.D. out of a new technique, and some silly lot of little green men had to choose my aerial and my frequency to communicate with us.”

This first source was nicknamed “LGM-1” (as in “Little Green Men-1”), but far from being an artificial source, the duo had actually identified the first pulsar — a rapidly-spinning, highly magnetized neutron star that generates powerful emissions from its precessing magnetic poles as it rotates.

This is how science works: An interesting signal is detected and theories are formulated as to how that signal could have been generated.

In the case of LGM-1, it was caused by an as-yet-to-be understood phenomenon involving a rapidly-spinning stellar corpse. In the case of FRB 121102, it is most likely an equally as compelling phenomenon, only vastly more powerful.

The least likely explanation of FRB 121102 makes a LOT of assumptions, namely: aliens that have become so incredibly technologically advanced (think type II or even type III on the Kardashev Scale) that they can fire a (presumably) narrow beam directly at us through intergalactic space over and over again (to explain the repeated FRB detections) — the odds of which would be vanishingly low — unless the signal is omnidirectional, so they’d need to access way more energy to make this happen. Another assumption could be that intelligent, technologically advanced civilizations are common, so it was only a matter of time before we saw a signal like FRB 121102.

Or it could be a supermassive black hole (say) doing something very energetic that science can’t yet explain.

Occam’s razor suggests the latter might be more reasonable.

This isn’t to say aliens don’t exist or that intelligent aliens aren’t transmitting radio signals, it just means the real cause of this particular FRB repeater is being generated by a known phenomenon doing something unexpected, or a new (and potentially more exciting) phenomenon that’s doing something exotic and new. It doesn’t always have to be aliens.

h/t:

Iain M. Banks, Science Fiction Genius, Dies at 59

Iain M. Banks
Iain M. Banks

It’s always hard when a person who inspired you in life dies. And for me, there are only a handful of people beyond my circles of family and friends who have, in some way, shaped my thinking.

But through his novels, Scottish writer Iain Banks had such a powerful impact on my teenage years that he, in no small way, gave me a new appreciation for science fiction and in doing so helped me pursue a higher education in astrophysics. Sadly, as he announced with his trademark wit only two months ago, Iain had terminal gall bladder cancer and today has died at the heartbreaking young age of 59. He will be sorely missed by the fiction and science fiction communities — he was a plain-speaking, powerful voice in life and a skillful genius when describing the worlds he created on paper.

My signed copy of Iain M. Banks' "Matter" -- my mum sat in on one of Iain's book readings in Bristol that I couldn't attend and got a signed copy of the novel for me -- one of my most precious books.
My signed copy of Iain M. Banks’ “Matter” — my mum sat in on one of Iain’s book readings in Bristol that I couldn’t attend and got a signed copy of the novel for me — one of my most precious books.

Now, I’m not the biggest of readers, but when you pick up an Iain Banks (a.k.a. Iain M. Banks for his science fiction novels) book, it’s hard to put down. His first science fiction novel Consider Phlebas introduced us to the epic Culture universe — a vast interstellar multi-species civilization, of which Earth and humanity had been enveloped. The very notion of a post-scarcity, pan-galactic race seemed to hit the sweet spot of my imagination, so I hungrily read all of Iain’s Culture series, feeling the very notion of what science fiction is change in my brain. In a particularly tumultuous period of my life, I took on Iain’s fictional writing too, reading the deeply unsettling The Wasp Factory.

Iain’s writing is a constant source of surprise to me — he has this unique ability to shock, enlighten and entertain while creating such a fine tapestry of plot twists and deep characters that you quickly become lost in his words.

But for me, Iain’s imagination forced the very limits of science fiction, expanding my thoughts on what is possible in our Universe. This is why, while struggling with mathematics in my undergraduate years at the University of Aberystwyth that Iain M. Banks’ work became a welcome escape. When I began questioning some of the fundamental ideas behind physics and developed a thirst for advanced and, quite frankly, unfathomable concepts in astrophysics, Iain’s books became a huge source of inspiration.

Although many facets of my life threw me on a course that would eventually see me tackle a PhD in coronal physics and send me on a life-changing trip to Hawaii and ultimately land me in California, with my beautiful wife Debra, 5 rabbits and a job with the task of communicating awe-inspiring space science to the world, Iain’s fictional universe has always been there, complementing my life in a very real way.

I will always remember Iain and will continue reading his novels so that inspiration endures beyond his death. People who inspire you are few and far between, so when someone changes the way you think through the medium of their writing, you should never let them go.

Goodbye Iain, the Culture will forever be my inspiration.

The White House Approves NASA’s ‘James Bond’ Asteroid Bagging Mission

Screengrab from the NASA "Asteroid Retrieval and Utilization Mission" animation (NASA LaRC/JSC)
Screengrab from the NASA “Asteroid Retrieval and Utilization Mission” animation (NASA LaRC/JSC)

It’s been a looooong time since I last updated Astroengine.com, so first off, apologies for that. But today seems as good a time as any to crank up the ‘engine’s servers as the White House has rubber-stamped a manned NASA mission to an asteroid! However, this isn’t what the President originally had in mind in 2009 when he mandated the US space agency with the task of getting astronauts to an asteroid by the mid-2020’s.

In a twist, it turns out that NASA will be basing their manned asteroid jaunt on a 2011 Keck Institute study. To cut a long story short (you can read the long story in my Discovery News article on the topic: “NASA to Hunt Down and Capture an Asteroid“), NASA will launch an unmanned spacecraft to hunt down a small space rock specimen, “lasso” it (although “bagging” it would be more accurate) and drag the wild asteroid to park it at the Earth-moon Lagrangian point, L2. Then we can treat it like a fast food store; we can fly to and from, chipping off pieces of space rock, return samples to Earth and do, well, SCIENCE!

Great? Great.

Overall, this robotic capture/manned exoplration of an asteroid saves cash and “optimizes” the science that can be done. It also lowers the risk associated with a long-duration mission into deep space. By snaring an asteroid in its natural habitat and dragging it back to the Earth-moon system, we avoid astronauts having to spend months in deep space. The EML2 point is only days away.

But when watching the exciting NASA video after the news broke today, I kept thinking…

asteroid-grab2

But that wasn’t the only thing I was thinking. I was also thinking: what’s the point? It’s flashy and patriotic, but where’s the meat?

The human component of this asteroid mission has now been demoted to second fiddle. Sure, it will utilize NASA’s brand new Orion spacecraft and be one of the first launches of the Space Launch System (SLS), but what will it achieve? Astronauts will fly beyond Moon orbit, dock with the stationary space rock and retrieve samples as they please, but why bother with astronauts at all?

It is hoped that the robotic asteroid bagging spacecraft could launch by 2017 and, assuming a few years to steer the asteroid to EML2, a human mission would almost certainly be ready by the mid-2020s. But by that time, sufficiently advanced robotics would be available for unmanned sample retrieval. Heck, as telepresence technology matures, the EML2 point will be well within the scope for a live feed — light-time between Earth and the EML2 point will only be a few seconds, perhaps a little more if communications need to be relayed around the Moon. Robotics could be controlled live by a “virtual astronaut” on Earth — we probably have this capability right now.

The most exciting thing for me is the robotic component of asteroid capture. The advances in asteroid rendezvous and trajectory modification techniques will be cool, although scaling the asteroid bagging technique up (for large asteroids that could actually cause damage should they hit Earth) would be a challenge (to put it mildly). At a push, it may even be of use to a theoretical future asteroid mining industry. The rationale is that if we can understand the composition of a small asteroid, we can hope to learn more about its larger cousins.

The human element seems to be an afterthought and purely a political objective. There will undoubtedly be advancements in life support and docking technologies, but it will only be a mild taster for the far grander (original) NASA plan to send a team of astronauts into deep space to study an asteroid far away from the Earth-Moon system. The argument will be “an asteroid is a stepping stone to Mars” — sadly, by watering down the human element in an already questionable asteroid mission, it’s hard to see the next step for a long-duration spaceflight to Mars.

From this logic, we may as well just keep sending robots. But that wasn’t the point, was it?

Take a look at the video and decide for yourself:

Sir Patrick Moore (1923-2012)

Sir Patrick Moore
Sir Patrick Moore

“I’m only a four-dimensional creature. Haven’t got a clue how to visualise infinity. Even Einstein hadn’t. I know because I asked him.”Sir Patrick Moore

The Sky at Night: Curiosity at Mars (Patrick Moore and Chris Lintott):

Patrick Moore interviews Carl Sagan (h/t @megschwamb):

BBC News: Sir Patrick Moore: Chris Lintott’s tribute
Discovery News: Astronomer Patrick Moore Dies at 89

Big AGU Announcements: Curiosity Team May Not, But What About Voyager 1? (Update)

A view from Curiosity's front hazcam of the sandy Mars soil the rover scooped samples of for analysis by its SAM instrument (NASA/JPL-Caltech)
A view from Curiosity’s front hazcam of the sandy Mars soil the rover scooped samples of for analysis by its SAM instrument (NASA/JPL-Caltech)

UPDATE 2: So it turns out that Curiosity does have data to suggest that organics and perchlorates may be present in the Mars soil. As NASA keeps reminding us, this is not “proof” of organics, it’s “promising data.” Regardless, the media has made up their own mind as to what it means. As for Voyager 1, my speculation that it has left the solar system wasn’t quite correct… close, but she hasn’t left the heliosphere, yet.

UPDATE 1: That whole thing I said in my Al Jazeera English op-ed about being blinkered on the organics explanation for the “big” news on Monday? Well, case in point, as tweeted by @MarsToday on Sunday night, perhaps Curiosity has discovered further evidence for perchlorates on Mars. I have no clue where this information is sourced, and I’m not going to speculate any more, but if perchlorates have been discovered in Gale Crater, it would support the findings of NASA’s 2008 Mars Phoenix lander findings of perchlorate and possible liquid water brine in the arctic regions of the Red Planet. Place your bets…

Over the last bizarre few days, a key NASA scientist (almost) spilled the beans on a “historic” discovery by the Mars Science Laboratory (MSL) rover Curiosity. Then, speculation ran wild. Had NASA’s newest Mars surface mission discovered organics? Feeling the need to stamp out the glowing embers of organic excitement ahead of the Dec. 3 AGU press conference, NASA said that there would be no big announcement on Monday. But then the agency went even further, issuing a terse statement to point out that the speculation is wrong. “At this point in the mission, the instruments on the rover have not detected any definitive evidence of Martian organics,” said NASA.

So now we’re left, understandably, wondering what lead MSL scientist John Grotzinger was referring to. I think it’s safe to assume that he wasn’t misquoted by the NPR journalist who happened to be sitting in his office when the MSL team was receiving data from the mission’s Sample Analysis at Mars (SAM) instrument. And if we take NASA’s damage-controlling statements at face value, Grotzinger was just getting excited for all the data being received from the rover — after all, the entire mission is historic.

As a science media guy with a background in science, I totally ‘get’ what the MSL team are going through. Scientists are only human and whether or not Grotzinger was getting excited for a specific “historic” find or just getting generally excited for all the “historic” data streaming from the rover, is irrelevant. Perhaps he should have been more careful as to the language he used when having an NPR reporter sitting in the same room as him, but that’s academic, I’m pretty sure that if I was leading the most awesome Mars mission in the history of Mars missions I’d be brimming over with excitement too. The scientific process is long and can often seem labored and secretive to the media and public — rumors or a few slipped words from scientists is often all that’s needed to spawn the hype. But for the scientific process to see its course, data needs to be analyzed, re-analyzed and theories need to be formulated. In an announcement as important as “organics on Mars,” the science needs to be watertight.

However, I can’t help but feel that, in NASA’s enthusiasm to “keep the lid” on speculation, that they are setting themselves up for a backlash on Monday.

If the AGU press conference is just “an update about first use of the rover’s full array of analytical instruments to investigate a drift of sandy soil,” as the NASA statement says, won’t there be any mention of organics? Will this be a similar announcement to the sampling of Mars air in the search for methane? The upshot of that Nov. 2 press conference was that the Mars air had been tested by SAM and no methane (within experimental limits) had been discovered… yet. But this was a sideline to the announcement of some incredible science as to the evolution of the Martian atmosphere.

This time, although there may not be “definitive,” absolute, watertight proof of organics, might mission scientists announce the detection of something that appears to be organics… “but more work is needed”? It’s a Catch 22: It’s not the “historic” news as the experiment is ongoing pending a rock-solid conclusion; yet it IS “historic” as the mere hint of a detection would bolster the organics experiments of the Viking landers in the 1970s and could hint at the discovery of another piece of the “Mars life puzzle.” And besides, everything Curiosity does is “historic.”

In NASA’s haste to damper speculation, have they cornered themselves into not making any big announcements on Monday? Or have they only added to the speculation, bolstering the media’s attention? Besides, I get the feeling that the media will see any announcement as a “big” announcement regardless of NASA scientists’ intent. Either way, it’s a shame that the hype may distract from the incredible science the MSL team are carrying out every single day.

For more on “Organicsgate,” read my Al Jazeera English op-ed Mars organics speculation butts heads with scientific process.”

Meanwhile, in deep space, a little probe launched 35 years ago is edging into the interstellar medium and NASA’s Voyager Program team are also holding an AGU press conference on Monday. Although there have been no NPR journalists getting the scoop from mission scientists, it’s worth keeping in mind that Voyager 1 really is about to make history. In October, I reported that the particle detectors aboard the aging spacecraft detected something weird in the outermost reaches of the Solar System. As Voyager 1 ventures deep into the heliosheith — the outermost component of the heliosphere (the Sun’s sphere of influence) — it detected inexplicable high-energy particles. The theory is that these particles are being accelerated by the magnetic mess that is the outermost reaches of the Solar System. But there is growing evidence in particle detections and magnetometer readings that the probe may have just left the Solar System, completely escaping the heliosphere.

A big hint is in the following graphs of data streaming from Voyager 1. The first plot shows the increase in high-energy cosmic ray particle counts. These high-energy particles typically originate from beyond the heliosphere. The bottom plot shows lower-energy particles that originate from the solar wind. Note how the lower-energy particle counts fell off a cliff this summer, and how the high-energy particles have seen a marked increase at around the same period:

High-energy cosmic ray count as detected by Voyager 1. Credit: NASA
High-energy cosmic ray count as detected by Voyager 1. Credit: NASA
Low-energy cosmic ray count as detected by Voyager 1. Credit: NASA
Low-energy cosmic ray count as detected by Voyager 1. Credit: NASA

So, in light of the media-centric Curiosity debate over what is “historic” and what’s not “historic” enough to be announced at conferences, I’m getting increasingly excited for what the Voyager team have got to say tomorrow. It’s inevitable that Voyager 1 will leave the Solar System, but will NASA call it at the AGU? Who knows, but that would be historic, just without the hype.

A Martian Storm Is Brewing

This nearly global mosaic of observations made by the Mars Color Imager on NASA's Mars Reconnaissance Orbiter on Nov. 18, 2012, shows a dust storm in Mars' southern hemisphere. Credit: NASA
This nearly global mosaic of observations made by the Mars Color Imager on NASA’s Mars Reconnaissance Orbiter on Nov. 18, 2012, shows a dust storm in Mars’ southern hemisphere. Credit: NASA

As the sols march on, NASA’s brand new nuclear-powered rover Curiosity has detected a dramatic change in its surrounding atmosphere. A once-clear vista of the distant rim of Gale Crater now looks smoggy — almost like the gray-brown-yellow stuff that hangs above Los Angeles on a hot summer’s day. So what’s causing this change in opacity?

As can be seen in the above global view of Mars, NASA’s Mars Reconnaissance Orbiter took a near-continuous observation of the planet on Nov. 18 with its Mars Color Imager. The mosaic has picked out an assortment of geographical features, but there’s one rather ominous atmospheric feature (white arrows) that grabbed the attention of Malin Space Science Systems’ Bruce Cantor.

A regional dust storm is brewing and Cantor first observed the storm on Nov. 10. He reported the detection to NASA’s Mars Exploration Rover team who manage Opportunity. Although the storm is over 800 miles from the tenacious rover, dust storms are of a concern for any solar powered surface mission, especially for a rover that has outlived its expected mission lifetime by several years. Opportunity’s solar panels are already covered in dust, so should there be an additional dip in sunlight due to a dusty atmosphere there could be an impact on its mission. Additional dust layers on the panels wouldn’t help either.

Opportunity does not have a weather station, but its cameras have detected a slight drop in atmospheric clarity. Curiosity, on the other hand, does have a weather station — called the Rover Environmental Monitoring Station (REMS) — and has been closely monitoring the atmospheric variability over the last few days, detecting a decreased air pressure and a slight rise in overnight low temperature. This is in addition to the dramatic loss in visibility. In short, it sounds like Curiosity can sense a storm in the air.

With the help of Emily Lakdawalla over at the Planetary Society, a nifty animation by Egorov Vitaly that highlights the change in visibility has been showcased:

Six Navcam images pointed toward the horizon taken over the course of Curiosity's time near Rocknest document changes in the transparency of the atmosphere.  NASA / JPL / Egorov Vitaly ("Zelenyikot")
Six Navcam images pointed toward the horizon taken over the course of Curiosity’s time near Rocknest document changes in the transparency of the atmosphere. NASA/JPL/ Egorov Vitaly (“Zelenyikot”)

“This is now a regional dust storm. It has covered a fairly extensive region with its dust haze, and it is in a part of the planet where some regional storms in the past have grown into global dust hazes,” said Rich Zurek, chief Mars scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “For the first time since the Viking missions of the 1970s, we are studying a regional dust storm both from orbit and with a weather station on the surface.”

Now this is the cool bit. We currently have an armada of Mars orbiters, plus two generations of Mars rovers doing groundbreaking work on opposite sides of the red planet. We are in an unprecedented age of planetary exploration where a network of robots all work in concert to aid our understanding of how the planet works. In this case, local weather changes are being observed around two surface missions while corroborating data is being gathered hundreds of miles overhead.

From the NASA JPL press release:

Starting on Nov. 16, the Mars Climate Sounder instrument on the Mars Reconnaissance Orbiter detected a warming of the atmosphere at about 16 miles (25 kilometers) above the storm. Since then, the atmosphere in the region has warmed by about 45 degrees Fahrenheit (25 degrees Celsius). This is due to the dust absorbing sunlight at that height, so it indicates the dust is being lofted well above the surface and the winds are starting to create a dust haze over a broad region.

Warmer temperatures are seen not only in the dustier atmosphere in the south, but also in a hot spot near northern polar latitudes due to changes in the atmospheric circulation. Similar changes affect the pressure measured by Curiosity even though the dust haze is still far away.

We’re monitoring weather on another planet people! If that’s not mind-blowing, I don’t know what is.

Note: Apologies for the Astroengine.com hiatus, I’ve been somewhat distracted with writing duties at Discovery News and Al Jazeera English. If you’re ever wondering where I’ve disappeared to, check in on my Twitter feed, I tweet a lot!

Intercontinental Travel Is Impossible…

(Imagine an island long, long ago, in an ocean far, far away…)

“Intercontinental travel will never happen. The nearest shore is thousands of miles away. This means that even if we had the ability to row five miles per day from our little island, it would take years to get there!

To rub (sea) salt into the wound, the nearest shoreline is probably not a place we’d want to visit anyway. We’ve heard that beasts of unimaginable horror lurk over the horizon. Even worse, what if that undiscovered country is a desert-like place, or a disease-ridden tropic? Perhaps water doesn’t even flow as a liquid! Imagine trying to live in a land covered with ice. What a thought!

To put it bluntly, our little island is quarantined from the rest of the world. But it’s not a quarantine where we are locked inside an impenetrable room, we’re quarantined by a mind-bogglingly vast expanse of ocean. We live here with only a rowing boat for transportation — you can do some laps around the island in that rowing boat, but that’s all.

Forget about it. Don’t look at those distant shores and think that some day we’ll be able to build an engine for that rowing boat. A little outboard motor wouldn’t get you very far — you’d likely run out of gas before the island is out of sight! Heck, you’ll probably starve before then anyway.

Just go home. Why are you still planning on building a big boat — that sci-fi notion of a metal-hulled “ship” no less! — when you should be worrying more about your little island? We have problems here! Our resources are dwindling, people are starving! Your dreams mean nothing in our everyday lives.”

What am I talking about? Read my Discovery News op-ed to find out…

Mars Rover Curiosity is a Steampunk Creation

The left eye of the Mast Camera (Mastcam) on NASA's Mars rover Curiosity took this image of the camera on the rover's arm, the Mars Hand Lens Imager (MAHLI), during the 30th sol of the rover's mission on Mars (Sept. 5, 2012).
The left eye of the Mast Camera (Mastcam) on NASA’s Mars rover Curiosity took this image of the camera on the rover’s arm, the Mars Hand Lens Imager (MAHLI), during the 30th sol of the rover’s mission on Mars (Sept. 5, 2012).

During the Sept. 6 press conference from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., Mars Science Laboratory (MSL) mission scientists discussed updates from Curiosity’s progress in Gale Crater. It’s hard to keep up with the incredible deluge of images and scientific data as the six-wheeled rover roves toward its first target — a geologically interesting location called “Glenelg.” Mission managers hope to use Curiosity’s drill for the first time when the rover arrives. Expect mission updates and some pretty cool photos to appear on Discovery News throughout the day.

There was one photograph, however, imaged by the rover’s Mastcam that was showcased in today’s briefing that fascinated me. Shown above, the Mars Hand Lens Imager (MAHLI) can be seen on the rover’s robotic arm (with dust cap still in place). All the instrumentation and wiring has a very cool Steampunk-esque quality to it.

When I “met” Curiosity at the JPL clean room last year, I was also fascinated by its ugly functionality. By “ugly,” I don’t mean repulsive, I actually fell in love with the robot that day. But with any space mission, function succeeds form and Curiosity is no different. Instruments jut out from a central box; cables snake over all surfaces; gold and silver components are scattered across the deck like opulent jewels; and the whole thing is supported by some seriously heavy duty wheels that wouldn’t look out of place attached to a Bentley cruising through Los Angeles.

Back then, I stared at the Mars exploration machine, whose one purpose is to do science in an alien land, and thought how alien the thing looked. But in all the ugliness of an apparently random assortment of instrumentation, Curiosity has an undeniably beautiful character. Also, it has a WALL-E-like “head” in the form of the blocky ChemCam atop its mast. And now I know what its character is after seeing this latest robotic arm photo; it’s a creation that wouldn’t look out of place in a Steampunk museum or imagined in a H. G. Wells novel. However, this isn’t sci-fi, this is real. We have a nuclear-powered rover on Mars. Sometimes it’s too hard to put such awesomeness into words.

Mars Rover Curiosity Begins its Martian Domination

Now THAT’s how you land a rover!

NASA’s Mars Science Laboratory “Curiosity” has landed inside Gale Crater in a damn-near perfect entry, descent and landing (EDL). What’s more, the first photos from the Martian surface were also received only minutes after confirmation of touchdown, depicting a wonderfully smooth plain littered with small rocks.

The first low resolution photo from Curiosity’s hazcam showed a horizon plus one of the rover’s wheels. And then a higher-resolution hazcam view streamed in. Then another — this time showing the shadow of the one-ton rover — an image that will likely become iconic for tonight’s entire EDL. The concerns about the ability of NASA’s orbiting satellite Mars Odyssey to relay signals from Curiosity rapidly evaporated.

Curiosity had landed and it was already taking my breath away.

After a long night in the “Media Overflow” trailer at NASA’s Jet Propulsion Laboratory, I felt overwhelmed with emotion. On the one hand, I was blown away by ingenuity of mankind — the fact we can launch such ambitious missions to other worlds is a testament to exploration and science in its purest form. But I was also overwhelmed by the spirit of JPL’s scientists and engineers who made this happen. I was humbled to be a member of the media covering the event from mission control. It was an experience I’ll never forget.

Tonight is a night to forget politics, this is a night to celebrate NASA and the incredible things they do.

I’ll post more soon, including photos from the event, but for now I need sleep.

What a night.

Welcome to Gale Crater. Credit: NASA
Welcome to Gale Crater. Credit: NASA