Thanks, Elon. Humanity Just Sneezed Into the Solar System

“I, for one, welcome our new snotty overlords.”

tesla
“Germs? What germs? I just got this Tesla waxed.” (SpaceX)

If you follow me on Twitter, you’ll probably know my (conflicted) feelings about Elon Musk blasting his cherry red Tesla roadster into space. But there’s one angle of the whole “I’m a billionaire and it’s my rocket company, I can do what the hell I like” saga I hadn’t considered: That same red roadster was carrying a potential biological weapon into space.

Conversely, it might be the biological equivalent of Noah’s Ark.

As the vehicle wasn’t designed (or, indeed, intended) for a planetary encounter (whether that be Mars, Earth or some random asteroid), NASA’s Office of Planetary Protection had no jurisdiction over the test launch of the SpaceX Falcon Heavy from Cape Canaveral, Fla., on Feb. 6. The Tesla roadster acted as the test mass for the launch, outfitted with a space-suited mannequin (or not) — a.k.a. “Starman” — with David Bowie’s “Space Oddity” playing on the radio and a “Don’t Panic” homage to Douglas Adams’ “The Hitchhiker’s Guide to the Galaxy” showing on the car’s display. There was a lot going on with that controversial launch, but no one can dispute that it wasn’t a marketing masterstroke.

As a bonus, I even saw the Falcon upper stage carry out its third burn that evening over Los Angeles during my night run, hours after the Florida launch:

Yeah, it was a memorable day.

So, back to planetary protection. Or, more precisely, lack thereof.

“Even if they radiated the outside, the engine would be dirty,” said Jay Melosh, professor of earth, atmospheric and planetary sciences at Purdue University, in a statement on Tuesday. “Cars aren’t assembled clean. And even then, there’s a big difference between clean and sterile.”

Also, this wan’t a new car. And no number of details would have removed terrestrial bacteria from the wheels, engine, upholstery and uncountable nooks and crannies bacteria have set up home. And if it’s been driven on Los Angeles roads… well, yuck. Put simply, this car wasn’t subject to the rigorous sterilization procedures spacecraft are subject to.

Space roadster proponents will probably argue that this car isn’t intended to launch a germy invasion party to any planetary body; it was blasted into open space and not likely to hit anything solid for millions of years. It’s just going to be an artificial satellite of the Sun, nothing more.

But.

Bacteria are hardy little buggers and even the frozen radioactive vacuum of space wont be enough to eradicate every microbe from inside that vehicle. Many strains of microbe will simply shut down and hibernate for extreme periods of time until they get heated back up and watered. And, as far as I’m aware, there was no attempt by SpaceX at protecting the extraterrestrial neighborhood from humanity’s germs (besides, why would they?), so there is likely a menagerie of microbial biomass hitching a ride.

Some scientists, being optimistic beings, view this differently, however. Far from being a germ-bomb waiting to smear its humanity’s snot over the pristine slopes of Olympus Mons, the Tesla might actually be a clever way of backing up Earth’s genetic information for the eons to come, regardless of what happens to life on Earth.

“The load of bacteria on the Tesla could be considered a biothreat, or a backup copy of life on Earth,” said Alina Alexeenko, professor of aeronautics and astronautics at Purdue, who specializes in freeze-drying bacteria.

There’s a larger question here, beyond the hype and the probability that the roadster will be a harmless addition to the Sun’s asteroid family; as commercial spaceflight is obviously in its infancy, who’s job is it to ensure payloads are clean? Is it even a priority? Sure, this SpaceX launch won’t likely hit Mars or even Earth, but what about future “test” launches?

How much dirty space junk is too much?

Exocomets Seen Transiting Kepler’s Stars

exocomets
ESO/L. Calçada

If you thought detecting small planets orbiting stars dozens of light-years distant was impressive, imagine trying to “see” individual comets zoom around their star. Well, astronomers have done just that after poring over 201,250 targets in the Kepler dataset.

NASA’s Kepler mission has been taking observational data since 2009, staring unblinkingly at a small area of sky in the direction of the constellation Cygnus until it transitioned into the K2 mission in 2013. In total, the space telescope has discovered over 2,500 confirmed exoplanets (and over 5,000 candidate exoplanets), transforming our understanding of the incredible menagerie of alien worlds in our galaxy. After including discoveries by other observatories, we know of over 3,500 exoplanets that are out there.

kepler-exoplanets
Kepler looks for very slight dips in light as exoplanets pass in front of their stars to detect alien worlds (NASA/JPL-Caltech)

Kepler detects exoplanets by watching out for periodic dips in the brightness of stars in its field of view. Should a slight dip in brightness be detected, it could mean that there’s an exoplanet orbiting in front of its host star—an event known as a “transit.” While these transits can help astronomers learn about the physical size of exoplanets and the period of their orbits, for example, there’s much more information in the transit data than initially meets the eye.

In a new study to be published in the journal Monthly Notices of the Royal Astronomical Society on Feb. 21, a team of researchers are reporting that they have found evidence for individual comets transiting in front of two stars. They detected six individual transits at the star KIC 3542116, which is located approximately 800 light-years from Earth, and one transit at KIC 11084727. Both stars of a similar type (F2V) and are quite bright.

Though other observations have revealed dusty evidence of cometary activity in other star systems before, this is the first time individual comets have been found leaving their own transit signal in Kepler data. And it turns out that their transit fingerprint is a little bit special:

comet-transits
One comet’s three transits around its host star, KIC 3542116. Credit: Rappaport et al. MNRAS 474, 1453, 2018.

“The transits have a distinct asymmetric shape with a steeper ingress and slower egress that can be ascribed to objects with a trailing dust tail passing over the stellar disk,” the astronomers write in their paper (arXiv preprint). “There are three deeper transits with depths of ≃ 0.1 percent that last for about a day, and three that are several times more shallow and of shorter duration.”

In other words, when compared with the transit of an exoplanet, comet transits appear wonky (or asymmetric). This is because comets possess tails of gas and dust that trail the nucleus; as the comet passes in front of its star, starlight is quickly blocked, but as it drifts by in its orbit, the dusty tail will act as a starlight dimmer, gradually allowing more starlight to be seen by Kepler. An exoplanet—or, indeed, any spherical object without a dusty tail—will create a symmetrical dip in the transit signal. Other possible causes of this unique transit signal (such as starspots and instrumental error) were systematically ruled out. (Interestingly, in a 1999 Astronomy & Astrophysics paper, this asymmetric comet transit signal was predicted by another team of researchers, giving this current work some extra certainty.)

But just because there was evidence of six comet transits at KIC 3542116, it doesn’t mean there were six comets. Some of those transits could have been caused by the same comet, so the researchers have hedged their bets, writing: “We have tentatively postulated that these are due to between 2 and 6 distinct comet-like bodies in the system.”

Using these transit data, the study also takes a stab at how big these comets are and even estimates their orbital velocities. The researchers calculate that these comets have masses that are comparable to Halley’s Comet, the famous short-period comet that orbits the sun every 74-79 years and was last visible from Earth in 1986. For the deeper transits (for KIC 3542116 and the single transit at KIC 11084727), they estimate that the comets causing those transits are travelling at speeds of between 35 to 50 kilometers per second (22 to 31 miles per second). For the shallow, narrow transits at KIC 3542116, the inferred speeds are between 75 to 90 kilometers per second (47 to 56 miles per second).

“From these speeds we can surmise that the corresponding orbital periods are ⪆ 90 days (and most probably, much longer) for the deeper transits, and ⪆ 50 days for the shorter events,” they write.

But the fact that comets were detected at two similar F2V-type stars gives the researchers pause. Is there something special about these stars that means there’s more likelihood of possessing comets? Or is it just chance? Also, the fact that these comet transits were identified by visually analyzing the Kepler datasets suggests that there are likely many more transits hiding in the archived Kepler observations.

One thing’s for sure: this is a mind-blowing discovery that underscores just how valuable exoplanet-hunting missions are for probing the environment around other stars and not just for discovering strange new worlds. I’m excited for what other discoveries are waiting in Kepler transit data and for future exoplanet-hunting missions such as NASA’s Transiting Exoplanet Survey Satellite (TESS) that is scheduled for launch this year.

Cassini’s Legacy: Enigmatic Enceladus Will Inspire Us for Generations to Come

pia21346-1041
NASA’s Cassini mission captured this view of icy moon Enceladus on March 29, 2017. The crescent is lit by the sun, but the near-side green hue is reflected sunlight bouncing off Saturn’s atmosphere — a.k.a. “Saturn glow” (NASA/JPL-Caltech/Space Science Institute)

The day before Cassini plunged into Saturn’s atmosphere, dramatically ending 13 years of Saturn exploration (and nearly two decades in space), I was sitting on a bench outside the Von Karman Visitor Center on the NASA Jet Propulsion Laboratory campus in La Cañada Flintridge with Linda Spilker, who served as the mission’s project scientist since before Cassini was launched.

What was supposed to be a quick 5-minute chat before lunch, turned into a wonderful 20-minute discussion about Cassini’s discoveries. But it was also about what the spacecraft meant to Spilker and how other space missions have shaped her life.

“I feel very fortunate to be involved with Cassini since the very beginning … and just to be there, to be one of the first to see SOI [Saturn Orbital Insertion] with those first incredible ring pictures,” she told me. “I love being an explorer. I worked on the Voyager mission during the flybys of Jupiter, Saturn, Uranus and Neptune; that sort of whet my appetite and made me want more, to become an explorer to go to the Saturn system.”

Spilker especially loved studying Saturn’s rings, not only from a scientific perspective, but also because they are so beautiful, she continued. “It’s been a heartwarming experience,” she said.

LastRingPortrait_Cassini_1080
Before Cassini crashed into Saturn’s atmosphere, it took a series of observations that created this mosaic of Saturn and its rings. Cassini plunged into the Saturnian atmosphere on Sept. 15 (NASA/JPL-Caltech/Space Science Institute/Mindaugas Macijauskas)

But Cassini’s “legacy discovery,” said Spilker, was the revelation that the tiny icy moon of Enceladus is active, venting water vapor into space from powerful geysers emerging from the moon’s “tiger stripes” — four long fissures in the moon’s south pole. After multiple observations of these geysers and direct sampling of the water particles during flybys, Cassini deduced that the icy space marble hides a warm, salty ocean.

“What Cassini will be remembered for — its legacy discovery — will be the geysers coming from Enceladus with the ocean with the potential for life. It’s a paradigm shift.” — Linda J. Spilker, Cassini project scientist, NASA Jet Propulsion Laboratory (JPL), Sept. 14, 2017.

Alongside Jupiter’s moon Europa, Enceladus has become a prime destination for future explorations of life beyond Earth. Its subsurface ocean contains all the ingredients for life as we know it and Cassini was the mission that inadvertently discovered its biological potential. So now we know about this potential, Spilker is keen to see a dedicated life-hunting mission that could go to Enceladus, perhaps even landing on the surface to return samples to Earth.

cassini-geysers
Artist impression of Cassini flying through Enceladus’ water plumes venting from the moon’s south pole (NASA/JPL-Caltech)

As Enceladus is much smaller and less massive than Europa, its gravity is lower, meaning that landing on the surface is an easier task. Also, the radiation surrounding Saturn is much less aggressive than Jupiter’s radiation belts, meaning less radiation shielding is needed for spacecraft going to Saturn’s moons.

But if we ever send a surface mission to Enceladus (or any of the icy moons in the outer solar system), the planetary protection requirements will be extreme.

“If any life were found on these moons, it would be microbial,” said Larry Soderblom, an interdisciplinary scientist on the Cassini mission. “Some [terrestrial] bacteria are very resilient and can survive in hot acid-reducing environments. They can be tenacious. We have to make sure we don’t leave any of these kinds of Earthly bacteria on these promising moons.”

Soderblom has a unique perspective on solar system exploration. His career spans a huge number of NASA missions since the 1960’s, including Mariner 6, 7, 9, Viking, Voyager, Galileo, Magellan, Mars Pathfinder, the Mars Exploration Rovers, Deep Space 1, to name a few. While chatting to me under the shade of a tree on the JPL campus, he pointed out that the outer solar system was seen as a very different place over half a century ago.

“When I started to explore the solar system as a young guy just out of graduate school, our minds-eye view of the outer solar system was pretty bleak,” he remembered. “We expected lifeless, dead, battered moons with no geologic activity.”

After being involved with many outer solar system missions, this view has radically changed. Not only have we discovered entire oceans on Enceladus and Europa, there’s active volcanoes on Jupiter’s tortured moon Io, an atmosphere on Titan sporting its own methane cycle and surface lakes of methane and ethane. Other moons show hints of extensive subsurface oceans too, including distant Triton, a moon of Neptune. When NASA’s New Horizons flew past Pluto in 2015, the robotic spacecraft didn’t see a barren, dull rock as all the artistic impressions that came before seemed to suggest. The dwarf planet is a surprisingly dynamic place with a rich geologic history.

pia12713
With a diameter of only 313 miles, tiny Enceladus is a surprising powerhouse of internal activity. Subsurface oceans are heated through tidal interactions with Saturn (and, possibly, radioactivity in its rocky core), forcing water through its south pole fissures (NASA/JPL-Caltech)

Sending our robotic emissaries to these distant and unforgiving places has revolutionized our understanding of the solar system and our place in it. Rather than the gas and ice giant moons being dull, barren and static, our exploration has revealed a rich bounty of geologic variety. Not only that, we’re almost spoilt for choices for our next giant leap of scientific discovery.

Missions like Cassini are essential for science. Before that spacecraft entered Saturn orbit 13 years ago, we had a very limited understanding of what the Saturnian system was all about. Now we can confidently say that there’s a tiny moon there with incredible biological potential — Enceladus truly is Cassini’s legacy discovery that will keep our imaginations alive until we land on the ice to explore its alien ocean.

For more on my trip to JPL, read my two HowStuffWorks articles:

Why Cassini Crashed: Protecting Icy Moon Enceladus at All Costs

What Epic Space Missions Like Cassini Teach Us About Ourselves

Heavy Stellar Traffic Sends Dangerous Comets Our Way

New image of comet ISON
Comet C/2012 S1 (ISON) as imaged by TRAPPIST–South national telescope at ESO’s La Silla Observatory in 2013 (TRAPPIST/E. Jehin/ESO)

Sixty-six million years ago Earth underwent a cataclysmic change. Back then, our planet was dominated by dinosaurs, but a mass extinction event hastened the demise of these huge reptiles and paved the way for the mammalian takeover. Though there is some debate as to whether the extinction of the dinosaurs was triggered by an isolated disaster or a series of disasters, one event is clear — Earth was hit by a massive comet or asteroid and its impact had global ramifications.

The leading theory is that a massive comet slammed into our planet, creating the vast Chicxulub Crater buried under the Yucatán Peninsula in Mexico, enshrouding the atmosphere in fine debris, blotting out the sun for years.

Although there is strong evidence of comet impacts on Earth, these deep space vagabonds are notoriously hard to track, let alone predict when or how often they may appear. All we know is that they are out there, there are more than we thought, they are known to hit planets in the solar system and they can wreak damage of apocalyptic proportions.

Now, using fresh observations from the European Space Agency’s Gaia mission, astronomer Coryn Bailer-Jones, who works at the Max Planck Institute for Astronomy in Munich, Germany, has added an interesting component to our understanding of cometary behavior.

Stellar Traffic

Long-period comets are the most mysterious — and troubling — class of comet. They will often appear from nowhere, after falling from their distant gravitational perches, zoom through the inner solar system and disappear once more — often to be never seen again. Or they hit something on their way through. These icy bodies are the pristine left-overs of our solar system’s formation five billion years ago, hurled far beyond the orbits of the planets and into a region called the Oort Cloud.

In the Oort Cloud these ancient masses have remained in relative calm far from the gravitational instabilities close to the sun. But over the eons, countless close approaches by other stars in our galactic neighborhood have occurred, causing very slight gravitational nudges to the Oort Cloud. Astronomers believe that such stellar encounters are responsible for knocking comets from this region, sending them on a roller-coaster ride to the inner solar system.

The Gaia mission is a space telescope tasked with precisely mapping the distribution and motion of stars in our galaxy, so Bailer-Jones has investigated the rate of stellar encounters with our solar system. Using information in Gaia’s first data release (DR1), Bailer-Jones has published the first systematic estimate of stellar encounters — in other words, he’s estimated the flow of stellar traffic in the solar system’s neighborhood. And the traffic was found to be surprisingly heavy.

In his study, to be published in the journal Astronomy & Astrophysics, Bailer-Jones estimates that, on average, between 490 and 600 stars will come within 16.3 light-years (5 parsecs) of our sun and 19-24 of them will come within 3.26 light-years (1 parsec) every million years.

According to a press release, all of these stars will have some gravitational effect on the solar system’s Oort Cloud, though the closest encounters will have a greater influence.

This first Gaia data release is valid for five million years into the past and into the future, but astronomers hope the next data release (DR2) will be able to estimate stellar traffic up to 25 million years into the past and future. To begin studying the stellar traffic that may have been responsible for destabilizing the dinosaur-killing comet that hit Earth 66 million years ago will require a better understanding of the mass distribution of our galaxy (and how it influences the motion of stars) — a long-term goal of the Gaia project.

An Early Warning?

Spinning this idea into the future, could this project be used to act as an early warning system? Or could it be used to predict when and where a long-period comet may appear in the sky?

In short: “No,” Bailer-Jones told Astroengine via email. “Some close stellar encounters will for sure shake up the Oort cloud and fling comets into the inner solar system, but which comets on which orbits get flung in we cannot observe.”

He argues that the probability of comets being gravitationally nudged can be modeled statistically, but this would require a lot of assumptions to be made about the Oort Cloud, a region of space that we know very little about.

Also, the Oort Cloud is located well beyond the sun’s heliosphere and is thought to be between 50,000 and 200,000 AU (astronomical units, where 1 AU is the average distance between the sun and the Earth) away, so it would take a long time for comets to travel from this region, creating a long lag-time between stellar close approach and the comet making an appearance.

“Typically it takes a few million years for a comet to reach the inner solar system,” he added, also pointing out that other factors can complicate calculations, such as Jupiter’s enormous gravity that can deflect the passage of comets, or even fling them back out of the solar system again.

This is a fascinating study that goes to show that gravitational perturbations in the Oort Cloud are far from being rare events. A surprisingly strong flow of stellar traffic will constantly rattle otherwise inert comets, but how many are dislodged and sent on the long journey to the solar system’s core remains a matter for statistics and probability.

The Sun Just Unleashed a Massive Explosion — at Mars

cme_c3_anim
NASA/ESA/SOHO

The Earth and Mars are currently on exact opposite sides of the sun — a celestial situation known as “Mars solar conjunction” — a time when we have no way of directly communicating with satellites and rovers at the Red Planet. So, when the Solar and Heliospheric Observatory (SoHO) spotted a huge (and I mean HUGE) bubble of superheated plasma expand from the solar disk earlier today (July 23), it either meant our nearest star had launched a vast coronal mass ejection directly at Earth or it had sent a CME in the exact opposite direction.

As another solar observatory — the STEREO-A spacecraft — currently has a partial view of the other side of the sun (it orbits ahead of Earth’s orbit, so it can see regions of the sun that are out of view from our perspective), we know that this CME didn’t emanate from the sun’s near side, it was actually launched away from us and Mars will be in for some choppy space weather very soon.

It appears the CME emanated from active region (AR) 2665, a region of intense magnetic activity exhibiting a large sunspot.

“If this explosion had occurred 2 weeks ago when the huge sunspot was facing Earth, we would be predicting strong geomagnetic storms in the days ahead,” writes Tony Phillips of Spaceweather.com.

CMEs are magnetic bubbles of solar plasma that are ejected at high speed into interplanetary space following a magnetic eruption in the lower corona (the sun’s lower atmosphere). From STEREO-A’s unique vantage point, it appears the CME detected by SoHO was triggered by a powerful solar flare that generated a flash of extreme-ultraviolet radiation (possibly even generating X-rays):

stereoa
Observation by STEREO-A of the flaring event that likely triggered today’s CME (NASA/STEREO)

When CMEs encounter Earth’s global magnetic field, the radiation environment surrounding our planet increases, posing a hazard for satellites and unprotected astronauts. In addition, if the conditions are right, geomagnetic storms may commence, creating bright aurorae at high latitudes. These storms can overload power grids on the ground, triggering mass blackouts. Predicting when these storms will occur is of paramount importance, so spacecraft such as SoHO, STEREO and others are constantly monitoring our star’s magnetic activity deep inside the corona and throughout the heliosphere.

Mars, however, is a very different beast to Earth in that it doesn’t have a strong global magnetosphere to shield against incoming energetic particles from the sun, which the incoming CME will be delivering very soon. As it lacks a magnetic field, this CME will continue to erode the planet’s thin atmosphere, stripping some of the gases into space. Eons of space weather erosion has removed most of the Martian atmosphere, whereas Earth’s magnetism keeps our atmospheric gases nicely contained.

When NASA and other space agencies check in with their Mars robots after Mars solar conjunction, it will be interesting to see if any recorded the space weather impacts of this particular CME.

h/t Spaceweather.com

MU69: New Horizons’ Next Kuiper Belt Target Is One Big Mystery

mu-mu-land
Not as advertised? 2014 MU69 could be one big Kuiper Belt mess (NASA/JHU-APL/SwRI/Steve Gribben)

“All bound for Mu Mu Land” — The KLF, ‘Justified and Ancient’ (seems appropriate)

After visiting Pluto on July 14, 2015, NASA’s epic New Horizons mission soared into the great unknown, a.k.a. the Kuiper Belt. This strange region, which extends beyond Pluto’s orbit, is known to be populated with dwarf planets, comets, asteroids and junk that was left behind after the solar system’s formation, five billion years ago.

In an effort to better understand the solar system’s boondocks, New Horizons is on a trajectory that will create a second flyby opportunity. On New Year’s Day 2019, the spacecraft will buzz a mysterious object called 2014 MU69. But although we know this Kuiper Belt Object is out there, astronomers aren’t entirely sure what it is. And that’s a bit of a problem.

For two seconds on June 3, astronomers were presented with an opportunity to better observe MU69, but instead of clearing up its mystery the occultation event has created more questions than answers.

An occultation is when an object, like a distant asteroid, drifts in front of a background star. If astronomers time it perfectly, they can observe the star at the time of occultation in a bid to image the tiny shadow that will rapidly speed across our planet. And in the case of the June 3 event, dozens of mission team members and collaborators were ready and waiting along the predicted shadow track in South Africa and Argentina. In all, 100,000 images were taken of the star during the rapid occultation.

What they saw — or, indeed, didn’t see — is a bit of a conundrum.

“These data show that MU69 might not be as dark or as large as some expected,” said Marc Buie, a New Horizons science team member and occultation team leader from Southwest Research Institute (SwRI) in Boulder, Colo., in a statement.

Observations by the Hubble Space Telescope had previously estimated that MU69 is between 12- to 25-miles wide. That might be a pretty big overestimation by all accounts. And it may not be a single object at all.

“These results are telling us something really interesting,” said Alan Stern, New Horizons Principal Investigator also of SwRI. “The fact that we accomplished the occultation observations from every planned observing site but didn’t detect the object itself likely means that either MU69 is highly reflective and smaller than some expected, or it may be a binary or even a swarm of smaller bodies left from the time when the planets in our solar system formed.”

If it’s the latter, this could pose a problem for New Horizons.

Before the mission encountered Pluto in 2015, there was concern that the dwarf planet’s neighborhood might have been filled with debris. This concern was heightened after Pluto’s moons Styx and Kerberos were revealed by Hubble in 2011, only four years before New Horizons was set to barrel through the system. If there were more sub-resolution chunks near Pluto, they would have been regarded as collision risks.

Although New Horizons survived the Pluto encounter, if MU69 is a swarm of debris and not a solid object, mission scientists will have to assess the impact risk once again when New Horizons attempts its second flyby in 2019.

More occultations are forecast for July 10 and July 17, and NASA will also be flying its airborne observatory SOFIA through the occultation path on July 10 in hopes of better resolving MU69’s true nature.

So, as New Horizons speeds toward MU69, one of the most ancient objects in our sun’s domain, mystery and potential danger awaits.

This Is NASA’s Future Mars 2020 Rover Looking for Biosignatures on the Red Planet

pia21635_small
NASA/JPL-Caltech

While Opportunity and Curiosity continue to explore the surface of Mars, the launch date of NASA’s next big rover mission is on the horizon. And here’s a stunning artist’s impression of the mission that NASA released on Tuesday.

Wait. Isn’t that Curiosity?

No. While the Mars 2020 rover will certainly look like Curiosity, as many of the current rover’s design features will be worked into NASA’s next six-wheeled robot, there will be some key differences in the next rover’s science.

Rather than seeking out past and present habitable environments (as Curiosity is currently doing on the slopes of Mount Sharp), one of Mars 2020’s stated science goals is to directly search for biological signatures of past and present microbial life on Mars. This next-generation rover will also feature a drill that can bore deep into rocks, pull samples and store them on the Martian surface for a possible future sample return mission.

For more on Mars 2020, check out NASA’s mission site.

Curiosity Is Getting Diggy With It in Mars’ Ripply Dunes

NASA/JPL-Caltech/MSSS

There are few sights on Mars more satisfying than its oddly familiar — yet weirdly alien — dunes.

On the one hand, the Martian dunes look much like the dunes we have on Earth — aeolian (“wind-driven”) formations undulating across the landscape have similarities regardless of which planet they were blown on.

But there’s something uncanny about Martian dunes. Maybe it’s the “extra” tiny ripples that NASA’s Curiosity itself discovered — a phenomenon that is exclusive to the Martian atmosphere. Or maybe it’s just that I know these dunes are being seen through synthetic eyes on a world millions of miles across the interplanetary void.

Who knows.

But right now, the six-wheeled robot is sampling grains of wind-blown regolith from a linear dunes on the slopes of Mount Sharp to help planetary scientists on Earth build a picture of how this ancient landscape was shaped.

Curiosity scooped samples of linear dune material into the rover’s Sample Analysis at Mars (SAM) so they could be compared with material from other dunes it had visited in 2015 and 2016. Samples are also planned to be delivered to the mission’s Chemistry and Mineralogy (CheMin) instrument. As NASA points out, this is the first ever study of extraterrestrial dunes. (Dune fields also exist on Saturn’s moon Titan, but as recent research indicates, those are very different beasts and haven’t been directly sampled.)

“At these linear dunes, the wind regime is more complicated than at the crescent dunes we studied earlier,” said Mathieu Lapotre, of the California Institute of Technology (Caltech), in Pasadena, Calif., who led the Curiosity dune campaign. “There seems to be more contribution from the wind coming down the slope of the mountain here compared with the crescent dunes farther north.”

All of the dunes Curiosity has sampled are a part of the Bagnold Dunes, a dune field that stretches up the northwestern flank of Mount Sharp. Within the field, depending on the wind conditions, different types of dunes have been found.

“There was another key difference between the first and second phases of our dune campaign, besides the shape of the dunes,” said Lapotre in a NASA statement. “We were at the crescent dunes during the low-wind season of the Martian year and at the linear dunes during the high-wind season. We got to see a lot more movement of grains and ripples at the linear dunes.”

 

Cassini Finds ‘Nothing’ in Saturn’s Ring Gap

NASA/JPL-Caltech

It’s official, there’s a whole lot of nothing in Saturn’s innermost ring gap.

This blunt — and slightly mysterious — conclusion was reached when scientists studied Cassini data after the spacecraft’s first dive through the gas giant’s ring plane. At first blush, this might not sound so surprising; the 1,200-mile-wide gap between Saturn’s upper atmosphere and the innermost edge of its rings does appear like an empty place. But as the NASA spacecraft barreled through the gap on April 26, mission scientists expected Cassini to hit a few stray particles on its way through.

Instead, it hit nothing. Or, at least, far fewer particles than they predicted.

“The region between the rings and Saturn is ‘the big empty,’ apparently,” said Earl Maize, Cassini’s project manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Cassini will stay the course, while the scientists work on the mystery of why the dust level is much lower than expected.”

Using Cassini’s Radio and Plasma Wave Science (RPWS), the scientists expected to detect multiple “cracks and pops” as the spacecraft shot through the gap. Instead, it picked up mainly signals from energetic charged particles buzzing in the planet’s magnetic field. When converted into an audio file, these signals make a whistling noise and this background whistle was expected to be drowned out by the ruckus of dust particles bouncing off the spacecraft’s body. But, as the following audio recording proves, very few pops and cracks of colliding debris were detected — it sounds more like an off-signal radio tuner:

Compare that with the commotion Cassini heard as it passed through the ring plane outside of Saturn’s rings on Dec. 18, 2016:

Now that is what it sounds like to get smacked by a blizzard of tiny particles at high speed.

“It was a bit disorienting — we weren’t hearing what we expected to hear,” said William Kurth, RPWS team lead at the University of Iowa, Iowa City. “I’ve listened to our data from the first dive several times and I can probably count on my hands the number of dust particle impacts I hear.”

From this first ring gap dive, NASA says Cassini likely only hit a handful of minute, 1 micron particles — particles no larger than those found in smoke. And that’s a bit weird.

As weird as it may be, the fact that the region of Cassini’s first ring dive is emptier than expected now allows mission scientists to carry out optimized science operations with the spacecraft’s instruments. On the first pass, Cassini’s dish-shaped high-gain antenna was used as a shield to protect the spacecraft as it made the dive. On its next ring dive, which is scheduled for Tuesday at 12:38 p.m. PT (3:38 p.m. ET), this precaution is evidently not needed and the spacecraft will be oriented to better view the rings as it flies through.

So there we have it, the first mysterious result of Cassini’s awesome Grand Finale! 21 ring dives to go…

KCRW ‘To The Point’ Interview: Cassini’s Grand Finale

c1_1238803_620x413
Artist’s impression of Cassini passing through the gap between Saturn and the planet’s rings (NASA/JPL-Caltech)

After all the excitement of last night’s Cassini mission checking in and transmitting data to NASA’s Deep Space Network, I joined Warren Olney on his NPR-syndicated show “To The Point” this morning to chat about the mission and why the “Grand Finale” is an awesome, yet bittersweet, part of Saturn exploration. Listen to the 10 minute segment here. It was great as always to chat with Warren, thanks for having me on the show!