The Naked Singularity Recipe: Spin a Black Hole, Add Mass

naked_singularity

The event horizon of a black hole is the point of no return. If anything, even light, strays within the bounds of this gravitational trap, it will never escape. The event horizon is what makes a black hole black.

But say if there was a way to remove the event horizon, leaving just the black hole’s singularity to be “seen” by the rest of the universe? What if there is a special condition that would allow this infinitely small, yet massive point to become naked?

Generally physicists agree that this is a physical impossibility, but the mathematics says otherwise; a naked singularity could be possible.

Previously on Astroengine, one “special condition” was investigated when an extreme black hole collision was simulated by a Caltech researcher. In this case, the black hole pair was smashed together, head-on, at a velocity close to the speed of light. The gravitational waves travelling away from the collision were then modelled and characterized. It turns out that after this insanely energetic impact, 14% of the total mass was converted into gravitational wave energy and both black holes merged as one.

While this might not be very realistic, it proved to be a very useful diagnostic tool to understand the conditions after the collision of two black holes. As an interesting observation, the Caltech researchers found that although the collision was extreme, and there was a huge amount of mass-energy conversion going on (plus, I’d imagine, a rather big explosion), neither black hole lost their event horizons.

Case closed, wouldn’t you think?

Actually, another theory as to how a black hole could be stripped naked has been knocking around for some time; what if you added mass to a black hole spinning at its maximum possible rate? Could the black hole be disrupted enough to shed its event horizon?

It turns out there’s a natural braking system that prevents this from happening. As soon as mass is dropped into the black hole, it is flung out of the event horizon by the black hole’s huge centrifugal force, preventing it from coming close to the singularity.

However, Ted Jacobson and Thomas Sotiriou at the University of Maryland at College Park have now improved upon this idea, sending mass in the same direction as the spinning black hole. Only this time, the black hole isn’t spinning at its fastest possible rate, the simulation lets the orbiting matter fall into the event horizon, speeding up its spin. The result? It appears to disrupt the black hole enough to strip away the event horizon, exposing the singularity.

The most interesting thing to come of this research is that swirling matter is falling into black holes all over the universe, speeding up their spin. Jacobson and Sotiriou may have stumbled on a viable mechanism that actually allows naked singularities in the cosmos. Unless nature has found another way to prevent the cosmic censorship hypothesis from being violated that is…

Source: New Scientist