I am fascinated with outer space, this is true. But if you stop to think about it, the inner space between the atoms is just as awe-inspiring as the vast distances separating the planets, stars and galaxies. In actuality the volume inside an hydrogen atom is essentially empty; the single electron “orbits” (if we consider the simple Bohr model of the atom) the central proton at a huge distance. It’s analogous to a quantum star system, where a planet orbits its parent star, hundreds of millions of miles away.
However, atoms aren’t as simple as Niels Bohr’s famous model (although Bohr’s model is none-the-less important as it always has been). The electrons occupy a cloud, rather than specific orbits, and the electron’s position cannot be defined as a point, more a statistically defined volume. As dictated by quantum theory these clouds vibrate at certain frequencies, depending on the electron energy. These electron energies are analogous to the simple electron “shells” physicists refer to in the textbooks; each progressively higher shell occupying a higher energy state. In reality, in the slightly fuzzy quantum world, the frequency of electron oscillation increases with energy.

When I was in university, I loved seeing the different modes of electron energy in 3D visualizations of the atom (pictured right). Lobes of electron clouds vibrating at different energies seemed to make sense. But now, for the first time, the clearest photographs of a single atom have been taken, with lobes of electron clouds — as predicted by quantum theory — intact.
This research soon to be published in the journal Physical Review B, demonstrates detailed images of a single carbon atom’s electron cloud (pictured top). Taken by Ukrainian researchers at the Kharkov Institute for Physics and Technology in Kharkov, Ukraine, these images clearly show the electron cloud in two energy states.
This amazing feat was accomplished using a field-emission electron microscope. Although this microscope has aided physicists since the 1930’s to image the vanishingly small, the Ukrainian researchers have developed a new way of making the tool so sensitive, single atoms can be imaged. After arranging a ridged chain of carbon atoms (only tens of atoms long) inside a vacuum chamber, the researchers passed 425 volts through the atoms. At the tip of the chain, the end carbon atom emitted its electrons and a surrounding phosphor screen captured an image. This image was of the electron cloud surrounding the single carbon atom.
Up until this point, field emitting microscopes have only been able to resolve the arrangement of atoms in a sample. This is the first time physicists have been able to see the structure of an electron cloud around an atom.
It’s always nice to validate a bedrock physics theory with photographic evidence, it’s exciting to think what the Kharkov Institute scientists will do next…
Source: Insidescience.org
That right-hand atom is mooning us
That right-hand atom is mooning us
does anyone know what an example of an 'electron cloud' would be?? Thanks!