NASA Uses Gravitational Wave Detector Prototype to Detect ‘Space Mosquito’ Splats

Artist impression of ESA LISA Pathfinder in interplanetary space (ESA)

Imagine speeding down the highway and plowing into an unfortunate swarm of mosquitoes. Now imagine that you had the ability to precisely measure the mass of each mosquito, the speed at which it was traveling and the direction it was going before it exploded over your windscreen.

Granted, the technology to accomplish that probably isn’t feasible in such an uncontrolled environment. Factors such as vibration from the car’s motor and tires on the road, plus wind and air turbulence will completely drown out any “splat” from a minuscule insect’s body, rendering any signal difficult to decipher from noise.

But move your hypothetical “car and mosquitoes” into space — as silly as that may sound — and things become a lot less noisy. And now NASA is measuring its own special kind of “mosquito splat” signal by using a rather unlikely space experiment.

The European LISA Pathfinder spacecraft is a proof of concept mission that’s currently in space, orbiting a region of gravitational stability between the Earth and the sun — called the L1 point located a million miles away. The spacecraft was launched there in late 2015 to carry out precision tests of instruments that will eventually be used in the space-based gravitational wave detector eLISA. Inside the payload is a miniaturized laser interferometer system that measures the distance between two test masses.

When launched in 2034, eLISA (which stands for Evolved Laser Interferometer Space Antenna) will see three spacecraft, orbiting the sun at the L1 point, firing ultra-precise lasers at one another as part of a space-based gravitational wave detector. Now we actually know gravitational waves exist — after the US-based Laser Interferometer Gravitational-wave Observatory (or LIGO) detected the space-time ripples created after the collisions of black holes — excitement is building that we might, one day, be able to measure other phenomena, such as the ultra-low frequency gravitational waves that were created during the Big Bang.

But the only way we can do this is to send stunningly precise interferometers into space, away from our vibration-filled atmosphere to stand a chance of detecting some of the faintest space-time rumbles in our cosmos that would otherwise be drowned out by a passing delivery truck or windy day. And LISA Pathfinder is currently out there, testing a tiny laser interferometer in a near-perfect gravitational free-fall, making the slightest of slight adjustments with its “ultra-precise micro-propulsion system.”

Although LISA Pathfinder is a test (albeit a history-making test of incredible engineering ingenuity), NASA thinks that it could actually be used as an observatory in its own right; not for hunting gravitational waves, but for detecting comet dust.

Like our mosquito-windscreen analogy, spacecraft get hit by tiny particles all the time, and LISA Pathfinder is no exception. These micrometeoroides come from eons of evaporating comets and colliding asteroids. Although measuring less than the size of a grain of sand, these tiny particles zip around interplanetary space at astonishing speeds — well over 22,000 miles per hour (that’s 22 times faster than a hyper-velocity rifle round) — and can damage spacecraft over time, slowly eroding unprotected hardware.

Therefore, it would be nice if we could create a map of regions in the solar system that contain lots of these particles so we can be better prepared to face the risk. Although models of solar system evolution help and we can estimate the distribution of these particles, they’ve only ever been measured near Earth, so it would be advantageous to find the “ground truth” and measure them directly from another, unexplored region of the solar system.

This is where LISA Pathfinder comes in.

As the spacecraft gets hit by these minuscule particles, although they are tiny, their high speed ensures they pack a measurable punch. As scientists want the test weights inside the spacecraft to be completely shielded from any external force — whether that’s radiation pressure from the sun or marauding micro-space rocks — the spacecraft has been engineered to be an ultra-precise container that carefully adjusts its orientation an exact amount to directly counter these external forces (hence the “ultra-precise micro-propulsion system”).

When LISA Pathfinder is struck by space dust, it compensates with its ultra-precise micro-thrusters (ESA/NASA)

This bit is pretty awesome: Whenever these tiny space particles hit the spacecraft, it compensates for the impact and that compensation is registered as a “blip” in the telemetry being beamed back to Earth. After careful analysis of the various data streams, researchers are learning a surprising amount of information about these micrometeoroides — such as their mass, speed, direction of travel and even their possible origin! — all for the ultimate goal of getting to know the tiny pieces of junk that whiz around space.

“Every time microscopic dust strikes LISA Pathfinder, its thrusters null out the small amount of momentum transferred to the spacecraft,” said Diego Janches, of NASA’s Goddard Space Flight Center in Greenbelt, Md. “We can turn that around and use the thruster firings to learn more about the impacting particles. One team’s noise becomes another team’s data.”

So, it turns out that you can precisely measure a mosquito impact on your car’s windshield — so long as that “mosquito” is a particle of space dust and your “car” is a spacecraft a million miles from Earth.

NASA put together a great video, watch it:

Aside: So it turned out that I inadvertently tested the “car-mosquito” hypothesis when driving home from Las Vegas — though some of these were a lot bigger than mosquitoes…


Smallest ‘Super-Earth’ Discovered With an Atmosphere — but It’s No Oasis


For the first time, astronomers have detected an atmosphere around a small (and likely) rocky exoplanet orbiting a star only 39 light-years away. Although atmospheres have been detected on larger alien worlds, this is the smallest world to date that has been found sporting atmospheric gases.

Alas, Gliese (GJ) 1132b isn’t a place we’d necessarily call “habitable”; it orbits its red dwarf a little too close to have an atmosphere anything like Earth’s, so you’d have to be very optimistic if you expect to find life (as we know it) camping there. But this is still a huge discovery that is creating a lot of excitement — especially as this exo-atmosphere has apparently evolved intact so close to a star.

The atmosphere was discovered by an international team of astronomers using the 2.2 meter ESO/MPG telescope at La Silla Observatory in Chile. As the exoplanet orbited in front of the star from our perspective (known as a “transit”), the researchers were able to deduce the physical size of the world by the fraction of starlight it blocked. The exoplanet is around 40 percent bigger than Earth (and 60 percent more massive) making it a so-called “super-Earth.”

Through precision observations of the infrared light coming from the exoplanet during the 1.6 day transits, the astronomers noticed that the planet looked larger at certain wavelengths of light than others. In short, this means that the planet has an atmosphere that blocks certain infrared wavelengths, but allows other wavelengths to pass straight through. Researchers of the University of Cambridge and the Max Planck Institute for Astronomy then used this information to model certain chemical compositions, leading to the conclusion that the atmosphere could be a thick with methane or water vapor.

Judging by the exoplanet’s close proximity to its star, this could mean that the planet is a water world, with an extremely dense and steamy atmosphere. But this is just one of the possibilities.

“The presence of the atmosphere is a reason for cautious optimism,” writes a Max Planck Institute for Astronomy news release. “M dwarfs are the most common types of star, and show high levels of activity; for some set-ups, this activity (in the shape of flares and particle streams) can be expected to blow away nearby planets’ atmospheres. GJ 1132b provides a hopeful counterexample of an atmosphere that has endured for billion of years (that is, long enough for us to detect it). Given the great number of M dwarf stars, such atmospheres could mean that the preconditions for life are quite common in the universe.”

To definitively work out what chemicals are in GJ 1132b’s atmosphere, we may not be waiting that long. New techniques for deriving high-resolution spectra of exoplanetary atmospheres are in the works and this exoplanet will be high on the list of priorities in the hunt for extraterrestrial biosignatures. (For more on this, you can check out a recent article I wrote for HowStuffWorks.)

Although we’ll not be taking a vacation to GJ 1132b any time soon, the discovery of an atmosphere around such a small alien world will boost hopes that similar sized super-Earths will also host atmospheres, despite living close to red dwarf stars that are known for their flaring activity. If atmospheres can persist, particularly on exoplanets orbiting within a star’s so-called habitable zone, then there really should be cause for optimism that there really might be an “Earth 2.0” out there orbiting one of the many red dwarfs in our galaxy.

Exoplanets Are Sacrificing Moons to Their White Dwarf Overlords

An artist’s impression of a planet, comet and debris field surrounding a white dwarf star (NASA/ESA)

As if paying tribute, exoplanets orbiting white dwarfs appear to be throwing their exomoons into hot atmospheres of these stellar husks.

This fascinating conclusion comes from a recent study into white dwarf stars that appear to have atmospheres that are “polluted” with rocky debris.

A white dwarf forms after a sun-like star runs out of hydrogen fuel and starts to burn heavier and heavier elements in its core. When this happens, the star bloats into a red giant, beginning the end of its main sequence life. After the red giant phase, and the star’s outer layers have been violently ripped away by powerful stellar winds, a small bright mass of degenerate matter (the white dwarf) and a wispy planetary nebula are left behind.

But what of the planetary system that used to orbit the star? Well, assuming they weren’t so close to the dying star that they were completely incinerated, any exoplanets remaining in orbit around a white dwarf have an uncertain future. Models predict that dynamical chaos will ensue and gravitational instabilities will be the norm. Exoplanets will shift in their orbits, some might even be flung clear of the star system all together. One thing is for sure, however, the tidal shear created by the compact white dwarf will be extreme, and should anything stray too close, it will be ripped to shreds. Asteroids will be pulverized, comets will fall and even planets will crumble.

Stray too close to a white dwarf and tidal shear will rip you to shreds (NASA/JPL-Caltech)

Now, in a science update based on research published late last year in the journal Monthly Notices of the Royal Astronomical Society, astronomers of the Harvard-Smithsonian Center for Astrophysics (CfA) have completed a series of simulations of white dwarf systems in an attempt to better understand where the “pollution” in these tiny stars’ atmospheres comes from.

To explain the quantities observed, the researchers think that not only is it debris from asteroids and comets, but the gravitational instabilities that throw the system into chaos are booting any moons — so-called exomoons — out of their orbits around exoplanets, causing them to careen into the white dwarfs.

The simulations also suggest that as the moons meander around the inner star system and fall toward the star, their gravities scramble to orbits of more asteroids and comets, boosting the around of material falling into the star’s atmosphere.

So there you have it, planets, should your star turn into a white dwarf (as our sun will in a few billion years), keep your moons close — your new stellar overlord will be asking for a sacrifice in no time.

Vast Magnetic Canyon Opens up on the Sun — Choppy Space Weather Incoming?

A “live” view of our sun’s corona (NASA/SDO)

As the sun dips into extremely low levels of activity before the current cycle’s “solar minimum”, a vast coronal hole has opened up in the sun’s lower atmosphere, sending a stream of fast-moving plasma our way.

To the untrained eye, this observation of the lower corona — the sun’s magnetically-dominated multi-million degree atmosphere — may look pretty dramatic. Like a vast rip in the sun’s disk, this particular coronal hole represents a huge region of “open” magnetic field lines reaching out into the solar system. Like a firehose, this open region is blasting the so-called fast solar wind in our direction and it could mean some choppy space weather is on the way.

As imaged by NASA’s Solar Dynamics Observatory today, this particular observation is sensitive to extreme ultraviolet radiation at a wavelength of 193 (19.3 nanometers) — the typical emission from a very ionized form of iron (iron-12, or FeXII) at a temperature of a million degrees Kelvin. In coronal holes, it looks as if there is little to no plasma at that temperature present, but that’s not the case; it’s just very rarefied as it’s traveling at tremendous speed and escaping into space.

The brighter regions represent closed field lines, basically big loops of magnetism that traps plasma at high density. Regions of close fieldlines cover the sun and coronal loops are known to contain hot plasma being energized by coronal heating processes.

When a coronal hole such as this rotates into view, we know that a stream of high-speed plasma is on the way and, in a few days, could have some interesting effects on Earth’s geomagnetic field. This same coronal hole made an appearance when it last rotated around the sun, generating some nice high-latitude auroras. predicts that the next stream will reach our planet on March 28th or 29th, potentially culminating in a “moderately strong” G2-class geomagnetic storm. The onset of geomagnetic storms can generate impressive auroral displays at high latitudes. Although not as dramatic as an Earth-directed coronal mass ejection or solar flare, the radiation environment in Earth orbit will no doubt increase.

The sun as seen right now by the SDO’s HMI instrument (NASA/SDO)

The sun is currently in a downward trend in activity and is expected to reach “solar minimum” by around 2019. As expected, sunspot numbers are decreasing steadily, meaning the internal magnetic dynamo of our nearest star is starting to ebb, reducing the likelihood of explosive events like flares and CMEs. This is all part of the natural 11-year cycle of our sun and, though activity is slowly ratcheting down its levels of activity, there’s still plenty of space weather action going on.

Mysterious Fomalhaut b Might Not Be an Exoplanet After All

The famous exoplanet was the first to be directly imaged by Hubble in 2008 but many mysteries surround its identity — so astronomers are testing the possibility that it might actually be an exotic neutron star.

NASA, ESA, P. Kalas, J. Graham, E. Chiang, E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center), M. Fitzgerald (Lawrence Livermore National Laboratory), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory)

Located 25 light-years from Earth, the bright star Fomalhaut is quite the celebrity. As part of a triple star system (its distant, yet gravitationally bound siblings are orange dwarf TW Piscis Austrini and M-type red dwarf LP 876-10) Fomalhaut is filled with an impressive field of debris, sharing a likeness with the Lord Of The Rings’Eye of Sauron.” And, in 2008, the eerie star system shot to fame as the host of the first ever directly-imaged exoplanet.

At the time, the Hubble Space Telescope spotted a mere speck in Fomalhaut’s “eye,” but in the years that followed the exoplanet was confirmed — it was a massive exoplanet approximately the size of Jupiter orbiting the star at a distance of around 100 AU (astronomical units, where 1 AU is the average distance the Earth orbits the sun). It was designated Fomalhaut b.

This was a big deal. Not only was it the first direct observation of a world orbiting another star, Hubble was the aging space telescope that found it. Although the exoplanet was confirmed in 2013 and the International Astronomical Union (IAU) officially named the exoplanet “Dagon” after a public vote in 2015, controversy surrounding the exoplanet was never far away, however.

Astronomers continue to pick at Fomalhaut’s mysteries and, in new research to be published in the journal Monthly Notices of the Royal Astronomical Society, Fomalhaut b’s identity has been thrown into doubt yet again.

“It has been hypothesized to be a planet, however there are issues with the observed colors of the object that do not fit planetary models,” the researchers write. “An alternative hypothesis is that the object is a neutron star in the near fore- or background of Fomalhaut’s disk.” The research team is lead by Katja Poppenhaeger, of Queen’s University, Belfast, and a preprint of their paper (“A Test of the Neutron Star Hypothesis for Fomalhaut b”) can be found via

Artist’s impression of Fomalhaut b inside its star’s debris disk (ESA, NASA, and L. Calcada – ESO for STScI)

Fomalhaut b was detected in visible and near-infrared wavelengths, but followup studies in other wavelengths revealed some peculiarities. For starters, the object is very bright in blue wavelengths, something that doesn’t quite fit with exoplanetary formation models. To account for this, theorists pointed to a possible planetary accretion disk like a system of rings. This may be the reason for the blue excess; the debris is reflecting more starlight than would be expected to be reflected by the planet alone. However, when other studies revealed the object is orbiting outside the star system’s orbital plane, this explanation wasn’t fully consistent with what astronomers were seeing.

Other explanations were put forward — could it be a small, warm world with lots of planetesimals surrounding it? Or is it just a clump of loosely-bound material and not a planet at all? — but none seem to quite fit the bill.

In this new research, Poppenhaeger’s team pondered the idea that Fomalhaut b might actually be a neutron star either in front or behind the Fomalhaut debris disk and, although their work hasn’t proven whether Fomalhaut b is an exoplanet or not, they’ve managed to put some limits on the neutron star hypothesis.

Neutron stars are the left-overs of massive stars that have run out of fuel and gone supernova. They are exotic objects that are extremely dense and small and, from our perspective, may produce emissions in visible and infrared wavelengths that resemble a planetary body. Cool and old neutron stars will even generate bluer light, which could explain the strange Fomalhaut b spectra.

Neutron stars also produce ultraviolet light and X-rays and, although it is hard to separate the UV light coming from the exoplanet and the UV light coming from the star, X-ray emissions should be resolvable.

Artist’s impression of a magnetar, an extreme example of a neutron star (ESO/L.Calçada)

So, using observations from NASA’s Chandra X-ray Observatory, the researchers looked at Fomalhaut b in soft X-rays and were able to put some pretty strong constraints on whether or not this object really could be a neutron star. As it turned out, Chandra didn’t detect X-rays (within its capabilities). This doesn’t necessarily mean that it isn’t a neutron star, it constrains what kind of neutron star it could be. Interestingly, it also reveals how far away this object could be.

Assuming it is a neutron star with a typical radius of 10 kilometers, and as no X-ray emissions within Chandra’s wavelength range were detected, this object would be a neutron star with a surface temperature cooler than 90,000 Kelvin — revealing that it is over 10 million years old. For this hypothesis to hold, the neutron star would actually lie behind the Fomalhaut system, around 44 light-years (13.5 parsecs) from Earth.

Further studies are obviously needed and, although the researchers point out that Fomalhaut b is still most likely an exoplanet with an extensive ring system (just with some strange and as-yet unexplained characteristics), it’s interesting to think that it could also be a neutron star that isn’t actually in the Fomalhaut system at all. In fact, it could be the closest neutron star to Earth, providing a wonderful opportunity for astronomical studies of these strange and exotic objects.

Plasma ‘Soup’ May Have Allowed Ancient Black Holes to Beef up to Supermassive Proportions

How ancient supermassive black holes grew so big so quickly is one of the biggest mysteries hanging over astronomy — but now researchers think they know how these behemoths packed on the pounds.

John Wise, Georgia Tech

Supermassive black holes are the most extreme objects in the universe. They can grow to billions of solar masses and live in the centers of the majority of galaxies. Their extreme gravities are legendary and have the overwhelming power to switch galactic star formation on and off.

But as our techniques have become more advanced, allowing us to look farther back in time and deeper into the distant universe, astronomers have found these black hole behemoths lurking, some of which are hundreds of millions to billions of solar masses. This doesn’t make much sense; if these objects slowly grow by swallowing cosmic dust, gas, stars and planets, how did they have time only a few hundred million years after the Big Bang to pack on all those pounds?

Well, when the universe was young, it was a very different place. Closely-packed baby galaxies generated huge quantities of radiation and this radiation had a powerful influence over star formation processes in neighboring galaxies. It is thought that massive starburst galaxies (i.e. a galaxy that is dominated by stellar birth) could produce so much radiation that they would, literally, snuff-out star formation in neighboring galaxies.

Stars form in vast clouds of cooling molecular hydrogen and, when star birth reigns supreme in a galaxy, black holes have a hard time accreting matter to bulk up — these newly-formed stars are able to escape the black hole’s gravitational grasp. But in the ancient universe, should a galaxy that is filled with molecular hydrogen be situated too close to a massive, highly radiating galaxy, these clouds of molecular hydrogen could be broken down, creating clouds of ionized hydrogen plasma — stuff that isn’t so great for star formation. And this material can be rapidly consumed by a black hole.

According to computer simulations of these primordial galaxies of hydrogen plasma, if any black hole is present in the center of that galaxy, it will feed off this plasma “soup” at an astonishingly fast rate. These simulations are described in a study published in the journal Nature Astronomy.

“The collapse of the galaxy and the formation of a million-solar-mass black hole takes 100,000 years — a blip in cosmic time,” said astronomer Zoltan Haiman, of Columbia University, New York. “A few hundred-million years later, it has grown into a billion-solar-mass supermassive black hole. This is much faster than we expected.”

But for these molecular hydrogen clouds to be broken down, the neighboring galaxy needs to be at just the right distance to “cook” its galactic neighbor, according to simulations that were run for several days on a supercomputer.

“The nearby galaxy can’t be too close, or too far away, and like the Goldilocks principle, too hot or too cold,” said astrophysicist John Wise, of the Georgia Institute of Technology.

The researchers now hope to use NASA’s James Webb Space Telescope, which is scheduled for launch next year, to look back to this era of rapid black hole formation, with hopes of actually seeing these black hole feeding processes in action. Should observations agree with these simulations, we may finally have some understanding of how these black hole behemoths grew so big so quickly.

“Understanding how supermassive black holes form tells us how galaxies, including our own, form and evolve, and ultimately, tells us more about the universe in which we live,” added postdoctoral researcher John Regan, of Dublin City University, Ireland.

This Black Hole Keeps Its Own White Dwarf ‘Pet’

The most compact star-black hole binary has been discovered, but the star seems to be perfectly happy whirling around the massive singularity twice an hour.

Credits: X-ray: NASA/CXC/University of Alberta/A.Bahramian et al.; Illustration: NASA/CXC/M.Weiss

A star in the globular cluster of 47 Tucanae is living on the edge of oblivion.

Located near a stellar-mass black hole at only 2.5 times the Earth-moon distance, the white dwarf appears to be in a stable orbit, but it’s still paying the price for being so intimate with its gravitational master. As observed by NASA’s Chandra X-ray Observatory and NuSTAR space telescope, plus the Australia Telescope Compact Array, gas is being pulled from the white dwarf, which then spirals into the black hole’s super-heated accretion disk.

47 Tucanae is located in our galaxy, around 14,800 light-years from Earth.

Eventually, the white dwarf will become so depleted of plasma that it will turn into some kind of exotic planetary-mass body or it will simply evaporate away. But one thing does appear certain, the white dwarf will remain in orbit and isn’t likely to get swallowed by the black hole whole any time soon.

“This white dwarf is so close to the black hole that material is being pulled away from the star and dumped onto a disk of matter around the black hole before falling in,” said Arash Bahramian, of the University of Alberta (Canada) and Michigan State University. “Luckily for this star, we don’t think it will follow this path into oblivion, but instead will stay in orbit.” Bahramian is the lead author of the study to be published in the journal Monthly Notices of the Royal Astronomical Society.

It was long thought that globular clusters were bad locations to find black holes, but the 2015 discovery of the binary system — called “X9” — generating quantities of radio waves inside 47 Tucanae piqued astronomers’ interest. Follow-up studies revealed fluctuating X-ray emissions with a period of around 28 minutes — the approximate orbital period of the white dwarf around the black hole.

So, how did the white dwarf become the pet of this black hole?

The leading theory is that the black hole collided with an old red giant star. In this scenario, the black hole would have quickly ripped away the bloated star’s outer layers, leaving a tiny stellar remnant — a white dwarf — in its wake. The white dwarf then became the black hole’s gravitational captive, forever trapped in its gravitational grasp. Its orbit would have become more and more compact as the system generated gravitational waves (i.e. ripples in space-time), radiating orbital energy away, shrinking its orbital distance to the configuration that it is in today.

It is now hoped that more binary systems of this kind will be found, perhaps revealing that globular clusters are in fact very good places to find black holes enslaving other stars.

This Is Why NASA’s Space Station Bose-Einstein Experiment Will Be so Cool

An instrument capable of cooling matter to a smidgen above absolute zero is being readied for launch to the International Space Station, possibly uncovering new physics and answering some of our biggest cosmological questions.


This summer, a rather interesting experiment will arrive at the International Space Station. Called the Cold Atom Laboratory (CAL), this boxy instrument will be able to chill material down to unimaginably low temperatures — so low that it will become the coldest place in the known universe.*

At a temperature of a billionth of a degree above absolute zero, CAL will investigate a state of matter that cannot exist in nature. This strange state is known as a Bose-Einstein condensate (or BEC), which possesses qualities that, quite frankly, don’t make a lot of sense.

When a gas is sufficiently cooled and the subatomic particles (bosons) drop to their lowest energy state, “normal” physics start to break down and quantum mechanics — the physics that governs the smallest scales — starts to manifest itself throughout a material (on a macroscopic scale). When this occurs, a BEC is possible. And it’s weird.

BECs act as a “superfluid,” which means it has zero viscosity. Early experiments on supercooled helium-4 exhibited this trait, causing confusion at the time when this mysterious fluid was observed flowing up, against the force of gravity, and over the sides of its containing beaker. Now we are able to cool gases to sufficiently low temperatures, this superfluid trait dominates and gases move as one, apparently coherent, mass.

So far, BEC experiments have only been carried out in a gravitational environment and can only be observed for a very short period of time as gravity continually pulls the BEC particles to the bottom of its container, thereby limiting its stability. But remove gravity from the equation and we enter a brand new observational regime with the potential for brand new insights to fundamental physics, and this is why NASA built CAL — humanity’s first microgravity BEC laboratory that could unlock some of the universe’s biggest mysteries.

CAL works by trapping the BEC in magnetic containment and lasers will be used to cancel out energy in the gas, thereby cooling it (pictured top). The gas will then be further cooled through evaporative cooling (using a radio frequency “knife”) and adiabatic expansion. When sufficiently cooled, experiments can be carried out on the BEC — the first time a BEC has been tested in space. (The technical details behind CAL’s technology can be found on the experiment’s website.)

“Studying these hyper-cold atoms could reshape our understanding of matter and the fundamental nature of gravity,” said Robert Thompson, CAL Project Scientist from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., in a statement. “The experiments we’ll do with the Cold Atom Lab will give us insight into gravity and dark energy — some of the most pervasive forces in the universe.”

It is hoped that BECs will be observable inside CAL for five to twenty seconds and the ultra-low temperature technologies developed will allow for future experiments that could contain stable BECs for hundreds of times longer.

CAL isn’t a pure physics curiosity, even if it is pretty awesome just to observe quantum physics manifest itself across an entire mass of particles (in free-fall, no less). Producing stable BECs could have technical applications, such as in quantum computer development and improving the precision of quantum clocks. In addition, creating a stable BEC in a lab setting could, quite literally, give us new eyes on fundamental universal mysteries. Lower temperatures means more stability and more stability means boosted sensor precision. Astronomy is all about precision, so the spin-off technologies from the techniques developed in CAL could usher in a new generation of ultra-sensitive telescopes and detectors that could, ultimately, reveal the mechanisms behind dark energy and dark matter.

“Like a new lens in Galileo’s first telescope, the ultra-sensitive cold atoms in the Cold Atom Lab have the potential to unlock many mysteries beyond the frontiers of known physics,” said Kamal Oudrhiri, CAL deputy project manager also at JPL.

CAL is set for launch on a SpaceX resupply mission to the International Space Station in August and I can’t wait to see what new physics the instrument might uncover.

*Assuming there are no other intelligent lifeforms also playing with supercooled matter elsewhere in the universe, of course.

ALMA Reveals the True Nature of Hubble’s Enigmatic Ghost Spiral

Appearing as a ghostly apparition in deep space, the LL Pegasi spiral nebula signals the death of a star — and the world’s most powerful radio observatory has delved into its deeper meaning.

Left: HST image of LL Pegasi publicized in 2010. Credit: ESA/NASA & R. Sahai. Right: ALMA image of LL Pegasi. Credit: ALMA (ESO/NAOJ/NRAO) / Hyosun Kim et al.

When the Hubble Space Telescope revealed the stunning LL Pegasi spiral for the first time, its ghostly appearance captivated the world.

Known to be an ancient, massive star, LL Pegasi is dying and shedding huge quantities of gas and dust into space. But this is no ordinary dying star, this is a binary system that is going out in style.

The concentric rings in the star system’s nebula are spiraling outwards, like the streams of water being ejected from a lawn sprinkler’s head. On initial inspection of the Hubble observation, it was assumed that the spiral must be caused by the near-circular orbit of two stars, one of which is generating the flood of gas. Judging by the symmetry of the rings, this system must be pointing roughly face-on, from our perspective.

Though these assumptions generally hold true, new follow-up observations by the Atacama Large Millimeter/submillimeter Array (ALMA) on the 5,000 meter-high Chajnantor plateau in Chile has added extra depth to the initial Hubble observations. Astronomers have used the incredible power of ALMA to see a pattern in the rings, revealing the complex orbital dynamics at play deep in the center of the spiral.

“It is exciting to see such a beautiful spiral-shell pattern in the sky. Our observations have revealed the exquisitely ordered three-dimensional geometry of this spiral-shell pattern, and we have produced a very satisfying theory to account for its details,” said Hyosun Kim, of the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taiwan and lead researcher of this work.

Just as we read tree rings to understand the history of seasonal tree growth and climatic conditions, Kim’s team used the rings of LL Pegasi to learn about the nature of the binary star’s 800 year orbit. One of the key findings was the ALMA imaging of bifurcation in the rings; after comparing with theoretical models, they found that these features are an indicator that the central stars’ orbit is not circular — it’s in fact highly elliptical.

ALMA observation of the molecular gas around LL Pegasi. By comparing this gas distribution with theoretical simulations, the team concluded that the bifurcation of the spiral-shell pattern (indicated by a white box) is resulted from a highly elliptical binary system. Credit: ALMA (ESO/NAOJ/NRAO) / Hyosun Kim et al.

Probably most striking, however, was that Hubble was only able to image the 2D projection of what is in fact a 3D object, something that ALMA could investigate. By measuring the line-of-sight velocities of gas being ejected from the central star, ALMA was able to create a three-dimensional view of the nebula, with the help of numerical modeling. Watch the animation below:

“While the [Hubble Space Telescope] image shows us the beautiful spiral structure, it is a 2D projection of a 3D shape, which becomes fully revealed in the ALMA data,” added co-author Raghvendra Sahai, of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., in a statement.

This research is a showcase of the power of combining observations from different telescopes. Hubble was able to produce a dazzling (2D) picture of the side-on structure of LL Pegasi’s spirals, but ALMA’s precision measurements of gas outflow speed added (3D) depth, helping us “see” an otherwise hidden structure, while revealing the orbital dynamics of two distant stars.

A special thanks to Hyosun Kim for sending me the video of the LL Pegasi visualization!

So it Could be a ‘Supervoid’ That’s Causing the Mysterious CMB ‘Cold Spot’

Only last month I recorded a DNews video about the awesome possibilities of the “Cold Spot” that sits ominously in the cosmic microwave background (CMB) anisotropy maps (anisotropies = teenie tiny temperature variations in the CMB).

I still hold onto the hope that this anomalous low temperature region is being caused by a neighboring parallel universe squishing up against our own. But evidence is mounting for there actually being a vast low density region — known as a “supervoid” — between us and that Cold Spot.

And that’s crappy news for my dreams of cosmologists finding bona fide observational clues of the multiverse hypothesis any time soon. The Cold Spot could just be the frigid fingerprint of this supervoid etched into our observations of the CMB.

But as this supervoid could be as wide as 1.8 billion light-years, this discovery is still crazy cool — the supervoid could be the newest candidate for the largest structure ever discovered in the universe. Suck it, Sloan Great Wall.

Read more about this new research published today in the Monthly Notices of the Royal Astronomical Society in my Discovery News blog.