Antimatter Angst: The Universe Shouldn’t Exist

The Veil Nebula as seen by Hubble. Because it looks cool (NASA, ESA, Hubble Heritage Team)

The universe shouldn’t exist, according to new ultra-precise measurements of anti-protons.

But the fact that I’m typing this article and you’re reading it, however, suggests that we are here, so something must be awry with our understanding of the physics the universe is governed by.

The universe is the embodiment of an epic battle between matter and antimatter that occurred immediately after the Big Bang, 13.82 billion years ago. Evidently, matter won — because there are galaxies, stars, planets, you, me, hamsters, long walks on sandy beaches and beer — but how matter won is one of the biggest mysteries hanging over physics.

It is predicted that equal amounts of matter and antimatter were produced in the primordial universe (a basic prediction by the Standard Model of physics), but if that’s the case, all matter in the universe should have been annihilated when it came into contact with its antimatter counterpart — a Big Bang followed by a big disappointment.

This physics conundrum focuses on the idea that all particles have their antimatter twin with the same quantum numbers, only the exact opposite. Protons have anti-protons, electrons have positrons, neutrinos have anti-neutrinos etc.; a beautiful example of symmetry in the quantum world. But should one of these quantum numbers be very slightly different between matter and antimatter particles, it might explain why matter became the dominant “stuff” of the universe.

So, in an attempt to measure one of the quantum states of particles, physicists of CERN’s Baryon–Antibaryon Symmetry Experiment (BASE), located near Geneva, Switzerland, have made the most precise measurement of the anti-proton’s magnetic moment. BASE is a complex piece of hardware that can precisely measure the magnetic moments of protons and anti-protons in an attempt to detect an extremely small difference between the two. Should there be a difference, this might explain why matter is more dominant than antimatter.

However, this latest measurement of the magnetic moment of anti-protons has revealed that the magnetic moments of both protons and anti-protons are exactly the same to a record-breaking level of precision. In fact, the anti-proton measurement is even more precise than our measurements of the magnetic moment of a proton — a stunning feat considering how difficult anti-protons are to study.

“It is probably the first time that physicists get a more precise measurement for antimatter than for matter, which demonstrates the extraordinary progress accomplished at CERN’s Antiproton Decelerator,” said physicist Christian Smorra in a CERN statement. The Antiproton Decelerator is a machine that can capture antiparticles (created from particle collisions that occur at CERN’s Proton Synchrotron) and funnel them to other experiments, like BASE.

Antimatter is very tricky to observe and measure. Should these antiparticles come into contact with particles, they annihilate — you can’t simply shove a bunch of anti-protons into a flask and expect them to play nice. So, to prevent antimatter from making contact with matter, physicists have to create magnetic vacuum “traps” that can quarantine anti-protons from touching matter, thereby allowing further study.

A major area of research has been to develop ever more sophisticated magnetic traps; the slightest imperfections in a trap’s magnetic field containing the antimatter can allow particles to leak. The more perfect the magnetic field, the less chance there is of leakage and the longer antimatter remains levitating away from matter. Over the years, physicists have achieved longer and longer antimatter containment records.

In this new study, published in the journal Nature on Oct. 18, researchers used a combination of two cryogenically-cooled Penning traps that held anti-protons in place for a record-breaking 405 days. In that time they were able to apply another magnetic field to the antimatter, forcing quantum jumps in the particles’ spin. By doing this, they could measure their magnetic moments to astonishing accuracy.

According to their study, anti-protons have a magnetic moment of −2.792847344142 μN (where μN is the nuclear magneton, a physical constant). The proton’s magnetic moment is 2.7928473509 μN, almost exactly the same — the slight difference is well within the experiment’s error margin. As a consequence, if there’s a difference between the magnetic moment of protons and anti-protons, it must be much smaller than the experiment can currently detect.

These tiny measurements have huge — you could say: universal — implications.

“All of our observations find a complete symmetry between matter and antimatter, which is why the universe should not actually exist,” added Smorra. “An asymmetry must exist here somewhere but we simply do not understand where the difference is.”

Now the plan is to improve methods of capturing antimatter particles, pushing BASE to even higher precision, to see if there really is an asymmetry in magnetic moment between protons and anti-protons. If there’s not, well, physicists will need to find their asymmetry elsewhere.

How Gravitational Waves Led Us to Neutron Star Gold

Artist impression of a violent neutron star collision (Dana Berry, SkyWorks Digital, Inc.)

One hundred and thirty million years ago in a galaxy 130 million light-years away, two neutron stars met their fate, merging as one. Trapped in a gravitational embrace, these two stellar husks spiraled closer and closer until they violently ripped into one another, causing a detonation that reverberated throughout the cosmos.

On August 17, the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO) and Italian Virgo gravitational wave detector felt the faint ripples in spacetime from that ancient neutron star collision washing through our planet. Until now, LIGO and Virgo have only confirmed the collisions and mergers of black holes, so the fact that a nearby (a relative term in this case) neutron star merger had been detected was already historic.

But the implications for this particular neutron star signal, which is comparatively weak in comparison with the black hole mergers that have come before it, are so profound that I’ve been finding it hard to put this grand discovery into words (though I have tried).

Why It Matters

With regards to gravitational waves, I feel I’ve described each gravitational wave discovery as “historic” and “a new era for astronomy” since their first detection on Sept. 15, 2015, but the detection of GW170817 may well trump all that have come before it, even though the signal was generated by neutron stars and not black hole heavyweights.

The thing with black holes is that when they collide and merge, they don’t necessarily produce electromagnetic radiation (i.e. visible light, X-rays or infrared radiation). They can go “bump” in the cosmic night and no intelligent being with a conventional telescope would see it happen. But in the the gravitational domain, black hole mergers echo throughout the universe; their gravitational waves travel at the speed of light, warping spacetime as they propagate. To detect these “invisible” waves, we must build instruments that can “see” the infinitesimal wobbles in the fabric of spacetime itself, and this is where laser interferometry comes in.

Very precise lasers are fired down miles-long tunnels in “L” shaped buildings in the two LIGO detectors (in Washington and Louisiana) and the Virgo detector near Pisa. When gravitational waves travel through us, these laser interferometers can measure the tiny spacetime warps. The more detectors measuring the same signal means a more precise observation and scientists can then work out where (and when) the black hole merger occurred.

There are many more details that can be gleaned from the gravitational wave signal from black hole mergers, of course — including the progenitor black holes’ masses, the merged mass, black hole spin etc. — but for the most part, black hole mergers are purely a gravitational affair.

Neutron stars, however, are a different beast and, on Aug. 17, it wasn’t only gravitational wave detectors that measured a signal from 130 million light-years away; space telescopes on the lookout for gamma-ray bursts (GRBs) also detected a powerful burst of electromagnetic radiation in the galaxy of NGC 4993, thereby pinpointing the single event that generated the gravitational waves and the GRB.

And this is the “holy shit” moment.

As Caltech’s David H. Reitze puts it: “This detection opens the window of a long-awaited ‘multi-messenger’ astronomy.”

What Reitze is referring to is that, for the first time, both gravitational waves and electromagnetic waves (across the EM spectrum) have been observed coming from the same astrophysical event. The gravitational waves arrived at Earth slightly before the GRB was detected by NASA’s Fermi and ESA’s INTEGRAL space telescopes. Both space observatories recorded a short gamma-ray burst, a type of high-energy burst that was theorized (before Aug. 17) to be produced by colliding neutron stars.

The growing family of merging black holes and neutron stars observed with gravitational waves (LIGO-Virgo/Frank Elavsky/Northwestern University)

Now scientists have observational evidence that these types of GRBs are produced by colliding neutron stars as the gravitational wave fingerprint unquestionably demonstrates the in-spiraling and merger of two neutron stars. This is a perfect demonstration of multi-messenger astronomy; where an energetic event can be observed simultaneously in EM and gravitational waves to reveal untold mysteries of the universe’s most energetic events.

Another Nod to Einstein

The fact that the gravitational waves and gamma-rays arrived at approximately the same time is yet another nod to Einstein’s general relativity. The century-old theory predicts that gravitational waves should travel at the speed of light and, via this brand spanking new way of doing multi-messenger astronomy, physicists and astronomers have again bolstered relativity with observational evidence.

But why did the gravitational waves arrive slightly before the GRB? Well, NASA’s Fermi team explains: “Fermi’s [Gamma-ray Burst Monitor instrument] saw the gamma-ray burst after the [gravitational wave] detection because the merger happened before the explosion,” they said in a tweet.

In other words, when the two neutron stars collided and merged, the event immediately dissipated energy as gravitational waves that were launched through spacetime at the speed of light — that’s the source of GW170817 — but the GRB was generated shortly after.

Enter the Kilonova

As the neutron stars smashed together, huge quantities of neutron star matter were inevitably blasted into space, creating a superheated, dense volume of free neutrons. Neutrons are subatomic particles that form the building blocks of atoms and if the conditions are right, the neutron star debris will undergo rapid neutron capture process (known as “r-process”) where neutrons combine with one another faster than the newly-formed radioactive particles can decay. This mechanism is responsible for synthesizing elements heavier than iron (elements lighter than iron are formed through stellar nucleosynthesis in the cores of stars).

Artist impression of colliding neutron stars generating gravitational waves and a “kilonova” (NSF/LIGO/Sonoma State University/A. Simonnet)

For decades astronomers have been searching for observational evidence of the r-process in action and now they have it. Soon after the merger, massive amounts of debris erupted in a frenzy of heavy element creation, triggering an energetic eruption known as a “kilonova” that was seen as a short GRB. The GRB was cataloged as “SSS17a.”

The Golden Ticket

Follow-up observations by the Hubble Space Telescope, Gemini Observatory and the ESO’s Very Large Telescope have all detected spectroscopic signatures in the afterglow consistent with the r-process taking place at the site of the kilonova, meaning heavy elements are being formed and, yes, it’s a goldmine. As in: there’s newly-synthesized gold there. And platinum. And all the other elements heavier than iron that aren’t quite so sexy.

And there’s lots of it. Researchers estimate that that single neutron star collision produced hundreds of Earth-masses of gold and platinum and they think that neutron star mergers could be the energetic process that seed the galaxies with heavy elements (with supernovas coming second).

So, yeah, it’s a big, big, BIG discovery that will reverberate for the decades to come.

The best thing is that we now know that our current generation of advanced gravitational wave detectors are sensitive enough to not only detect black holes merging billions of light-years away, but also detect the nearby neutron stars that are busy merging and producing gold. As more detectors are added and as the technology and techniques mature, we’ll be inundated with merging events big and small, each one teaching us something new about our universe.

After Historic Discovery, Higgs Flies Economy

Real superstars: Peter Higgs congratulates ATLAS experiment spokesperson Fabiola Gianotti after she announced her collaboration's discovery of a Higgs-like particle (CERN/ATLAS/Getty)
Real superstars: Peter Higgs congratulates ATLAS experiment spokesperson Fabiola Gianotti after she announced her collaboration’s discovery of a Higgs-like particle. Credit: CERN/ATLAS/Getty

I am endlessly baffled by modern society.

We have reality TV stars whose only talent is to shock and annoy, and yet inexplicably have millions of adoring fans. We also have sports superstars who get paid tens of millions of dollars to play a game they love, and yet they still get elevated to God-like status.

And then there’s Professor Peter Higgs, arguably the biggest science superstar of recent years.

The 83-year-old retired theoretical physicist was one of six scientists who, in the 1960s, assembled the framework behind the Higgs boson — the almost-unequivocally-discovered gauge particle that is theorized to carry the Higgs field, thereby endowing matter with mass. The theory behind the Higgs boson and all the high-energy physics experiments pursuing its existence culminated in a grand CERN announcement from Geneva, Switzerland, on Wednesday. With obvious emotion and nerves, lead scientist of the Large Hadron Collider’s CMS detector Joe Incandela announced what we’ve all been impatiently waiting for: “We have observed a new boson.

So, we now have evidence for the existence of the Higgs boson — or a Higgs boson — to a high degree of statistical certainty, ultimately providing observational evidence for a critical piece of the Standard Model. This story began half a century ago with Prof. Higgs’ theoretical team, and it culminated on July 4, 2012, when results from a $10 billion particle accelerator were announced.

After the historic events of the last few days, one would think Peter Higgs would have been at least treated to a First Class flight back to his home in Scotland. But true to form, Higgs had other ideas:

Later, Higgs’s friend and colleague Alan Walker recounted the low-key celebration they held after learning of the breakthrough, one of the most important scientific discoveries of recent years.

Walker said he and Higgs were flying home from CERN in Geneva this week on budget airline easyJet when he offered Higgs a glass of Prosecco sparkling wine so they could toast the discovery.

Higgs replied: “‘I’d rather have a beer’ and popped a can of London Pride,” Walker said.

via Discovery News

In a world where “celebrities” are hailed as superhuman, to hear that potential Nobel Prize candidate Peter Higgs took a budget airline home, after history had been made, typifies the humble nature of a great scientist and puts the world of celebrity to shame. Money and fame matters little to the people who are unraveling the fabric of the Universe.

On a different (yet related) note, Motherboard interviewed people on the streets of Brooklyn and asked them if they knew what the Higgs boson is. Most had never heard of it, let alone understood it (which, let’s face it, isn’t a surprise — many science communicators still have problems explaining the Higgs mechanism). But I wonder if the same group of people were asked if they knew what a “Snookie” was; I’m guessing they’d have no problem answering.

People may not read the news, but they sure have an innate knowledge of who’s in the gossip columns.

Holographic Universe: Fermilab to Probe Smallest Space-Time Scales

Conceptual design of the Fermilab holometer (Fermilab)
Conceptual design of the Fermilab holometer (Fermilab)

During the hunt for the predicted ripples in space-time — known as gravitational waves — physicists stumbled across a rather puzzling phenomenon. Last year, I reported about the findings of scientists using the GEO600 experiment in Germany. Although the hi-tech piece of kit hadn’t turned up evidence for the gravitational waves it was seeking, it did turn up a lot of noise.

Before we can understand what this “noise” is, we need to understand how equipment designed to look for the space-time ripples caused by collisions between black holes and supernova explosions.

Gravitational wave detectors are incredibly sensitive to the tiniest change in distance. For example, the GEO600 experiment can detect a fluctuation of an atomic radius over a distance from the Earth to the Sun. This is achieved by firing a laser down a 600 meter long tube where it is split, reflected and directed into an interferometer. The interferometer can detect the tiny phase shifts in the two beams of light predicted to occur should a gravitational wave pass through our local volume of space. This wave is theorized to slightly change the distance between physical objects. Should GEO600 detect a phase change, it could be indicative of a slight change in distance, thus the passage of a gravitational wave.

While looking out for a gravitational wave signal, scientists at GEO600 noticed something bizarre. There was inexplicable static in the results they were gathering. After canceling out all artificial sources of the noise, they called in the help of Fermilab’s Craig Hogan to see if his expertise of the quantum world help shed light on this anomalous noise. His response was as baffling as it was mind-blowing. “It looks like GEO600 is being buffeted by the microscopic quantum convulsions of space-time,” Hogan said.

Come again?

The signal being detected by GEO600 isn’t a noise source that’s been overlooked, Hogan believes GEO600 is seeing quantum fluctuations in the fabric of space-time itself. This is where things start to get a little freaky.

According to Einstein’s view on the universe, space-time should be smooth and continuous. However, this view may need to be modified as space-time may be composed of quantum “points” if Hogan’s theory is correct. At its finest scale, we should be able to probe down the “Planck length” which measures 10-35 meters. But the GEO600 experiment detected noise at scales of less than 10-15 meters.

As it turns out, Hogan thinks that noise at these scales are caused by a holographic projection from the horizon of our universe. A good analogy is to think about how an image becomes more and more blurry or pixelated the more you zoom in on it. The projection starts off at Planck scale lengths at the Universe’s event horizon, but its projection becomes blurry in our local space-time. This hypothesis comes out of black hole research where the information that falls into a black hole is “encoded” in the black hole’s event horizon. For the holographic universe to hold true, information must be encoded in the outermost reaches of the Universe and it is projected into our 3 dimensional world.

But how can this hypothesis be tested? We need to boost the resolution of a gravitational wave detector-type of kit. Enter the “Holometer.”

Currently under construction in Fermilab, the Holometer (meaning holographic interferometer) will delve deep into this quantum realm at smaller scales than the GEO600 experiment. If Hogan’s idea is correct, the Holometer should detect this quantum noise in the fabric of space-time, throwing our whole perception of the Universe into a spin.

For more on this intriguing experiment, read the Symmety Magazine article “Hogan’s holometer: Testing the hypothesis of a holographic universe.”

Say Hello To My Little Friend: The Atom, Imaged


I am fascinated with outer space, this is true. But if you stop to think about it, the inner space between the atoms is just as awe-inspiring as the vast distances separating the planets, stars and galaxies. In actuality the volume inside an hydrogen atom is essentially empty; the single electron “orbits” (if we consider the simple Bohr model of the atom) the central proton at a huge distance. It’s analogous to a quantum star system, where a planet orbits its parent star, hundreds of millions of miles away.

However, atoms aren’t as simple as Niels Bohr’s famous model (although Bohr’s model is none-the-less important as it always has been). The electrons occupy a cloud, rather than specific orbits, and the electron’s position cannot be defined as a point, more a statistically defined volume. As dictated by quantum theory these clouds vibrate at certain frequencies, depending on the electron energy. These electron energies are analogous to the simple electron “shells” physicists refer to in the textbooks; each progressively higher shell occupying a higher energy state. In reality, in the slightly fuzzy quantum world, the frequency of electron oscillation increases with energy.

Examples of electron atomic and molecular orbitals. The "lobes" are representative of the electron clouds surrounding the nuclei
Examples of electron atomic and molecular orbitals. The lobes are representative of the electron clouds surrounding the nuclei (source)

When I was in university, I loved seeing the different modes of electron energy in 3D visualizations of the atom (pictured right). Lobes of electron clouds vibrating at different energies seemed to make sense. But now, for the first time, the clearest photographs of a single atom have been taken, with lobes of electron clouds — as predicted by quantum theory — intact.

This research soon to be published in the journal Physical Review B, demonstrates detailed images of a single carbon atom’s electron cloud (pictured top). Taken by Ukrainian researchers at the Kharkov Institute for Physics and Technology in Kharkov, Ukraine, these images clearly show the electron cloud in two energy states.

This amazing feat was accomplished using a field-emission electron microscope. Although this microscope has aided physicists since the 1930’s to image the vanishingly small, the Ukrainian researchers have developed a new way of making the tool so sensitive, single atoms can be imaged. After arranging a ridged chain of carbon atoms (only tens of atoms long) inside a vacuum chamber, the researchers passed 425 volts through the atoms. At the tip of the chain, the end carbon atom emitted its electrons and a surrounding phosphor screen captured an image. This image was of the electron cloud surrounding the single carbon atom.

Up until this point, field emitting microscopes have only been able to resolve the arrangement of atoms in a sample. This is the first time physicists have been able to see the structure of an electron cloud around an atom.

It’s always nice to validate a bedrock physics theory with photographic evidence, it’s exciting to think what the Kharkov Institute scientists will do next…


Are Wormholes Quantum Vacuum Cleaners?

The wormhole could form shortcuts in space-time (

General relativity and quantum dynamics don’t get along too well.

If you had to compare the two it would be like evaluating the differences between a Mac and a PC; both are well-honed examples of modern computing, but both are hopelessly incompatible. In computing, this isn’t too much of a problem, you either use a PC or a Mac, or you buy both for their individual strengths (and then complain about Microsoft regardless). But in physics, when you’re trying to find a unified theory, the fact that gravity has been outcast from the Standard Model club, tough questions need to be asked. Although there is some hope being generated by superstring theory, quantum gravity has a long way to go before it can be proven (although high energy particle accelerators such as the LHC will be able to help out in that department).

As pointed out by KFC at the Physics ArXiv Blog, “physicists have spent little time bothering to find out” how quantum mechanics operates in a curved space-time as predicted by Einstein’s general relativity. But now, a physicist has done the legwork and imagined what a quantum particle would do when faced with one of the most famous loopholes in space-time; the mouth of a wormhole. And what popped out of the equations? Another curious force called the “quantum anticentrifugal force.”

So, what’s that all about?

Rossen Dandolo from the Universite de Cergy-Pontoise, France, decided to focus on the wormhole as this is the most extreme example of curved space-time there is. Wormholes are used over and over in sci-fi storylines because they are theorized to link two locations in space-time (thereby forming a shortcut), or even two different universes. As this is space-time we’re talking about, there’s also some possibility of using wormholes as passages through time. Although wormholes sound like a whole lot of fun, in practical terms, they won’t be of much use without some exotic energy to hold the throat of the wormhole open.

Dandolo, however, isn’t too interested in traversing these holes in space-time, he is interested in finding out how a particle acts when in the locality of the mouth of a wormhole.

Beginning with some bedrock quantum theory, Dandolo uses the Heisenberg Uncertainty Principal that stipulates that you cannot know a particle’s momentum and location at the same time. So far, so good. Now, looking at a prediction of general relativity, the wormhole will warp space-time to the extreme, stretching the space around the hole. This space-time stretching causes an increase in uncertainty in the location of the particle. As uncertainty in location increases, the uncertainty in momentum decreases. Therefore, the closer you get to the mouth of the wormhole, the momentum, and therefore particle energy, will decrease.

This interaction between the stretching of space-time and quantum properties of the particle has some amazing ramifications. If the particle’s energy deceases the closer it gets to falling into the wormhole, the wormhole is acting as a potential well; particles will move to a location with less energy. Therefore, a new force — combining both quantum dynamics and general relativity — is acting on particles that stray close to the wormhole: an anticentrifugal force.

This makes wormholes particle vacuum cleaners, exerting a space-time curvature effect on the quantum qualities of matter.

General relativity and quantum dynamics might have some stronger ties than we think…

Source: Wormholes Generate New Kind of Quantum Anticentrifugal Force, by KFC on the ArXiv Blog.

Peter Higgs Discovers Higgs Boson… in the Mail!

Dr Peter Higgs holds his very own Higgs boson (©Particle Zoo/Peter Higgs)
Peter Higgs holds his very own Higgs boson (©Particle Zoo/Peter Higgs)

In October, something very special happened to me. There, on the doorstep, a Higgs boson sat, waiting to be picked up and unwrapped from his packaging (and yes, I can confirm, he is a he).

Of course, he wasn’t the same Higgs boson physicists at the Large Hadron Collider (LHC) were looking for, he was a Higgs boson plushie from Julie Peason’s Particle Zoo.

Since that day, Higgsy (as I affectionately call him) has been sitting on my desk, watching me write, whilst holding down a stack of papers when I have my office window open.

Yesterday, I received some more good news via email from my friend Julie, the Particle Zookeeper. The particle physicist whom the Higgs boson is named after has also discovered his very own Higgs boson… at his home in Scotland!
Continue reading “Peter Higgs Discovers Higgs Boson… in the Mail!”

Is the Universe a Holographic Projection?

Luke and Obi-Wan look at a 3D hologram of Leia projected by R2D2 (Star Wars)
Luke and Obi-Wan look at a 3D hologram of Leia projected by R2D2 (Star Wars)

Could our cosmos be a projection from the edge of the observable Universe?

Sounds like a silly question, but scientists are seriously taking on this idea. As it happens, a gravitational wave detector in Germany is turning up null results on the gravitational wave detection front (no surprises there), but it may have discovered something even more fundamental than a ripple in space-time. The spurious noise being detected at the GEO600 experiment has foxed physicists for some time. However, a particle physicist from the accelerator facility Fermilab has stepped in with his suspicion that the GEO600 “noise” may not be just annoying static, it might be the quantum structure of space-time itself
Continue reading “Is the Universe a Holographic Projection?”

Higgs Boson Discovered on Doorstep

You don’t need the Large Hadron Collider to discover the Higgs boson after all…

The moment of discovery. It turns out Higgsy is a little shy.
The moment of discovery. It turns out Higgsy is a little shy.

This evening I went outside to investigate a noise. On opening the door I saw a small box lying awkwardly on its side against a flower pot. A little confused (as there was no knock on the door to say there was a delivery), I picked the small package. The box was heavy. I gave it a shake. Something was rolling around in there. It didn’t make a sound.

On opening the box I couldn’t believe my eyes. There he was, hiding under styrofoam packaging, neatly wrapped in a clear plastic bag, the one particle EVERYONE wants to meet… the Higgs boson!

Far from being smug, the little guy was actually pretty shy and was reluctant to leave the comfort of his box. After a brief chat I assured him that he was safe from particle physicists wanting to see him spontaneously decay…

As you might have guessed, I didn’t discover a real Higgs particle on my doorstep (although we all know that it must be full of them… theoretically anyhow). My Higgs boson plushie has just travelled from the caring hands of its creator, Particle Zookeeper Julie Peasley…
Continue reading “Higgs Boson Discovered on Doorstep”

Particle Zoo: The Higgs Boson For Sale

Collect them all! The Standard Model of plushie particles (© Particle Zoo & Julie Peasley)
Collect them all! The Standard Model of plushie particles (© Particle Zoo & Julie Peasley)

Astroengine exclusive interview with Particle Zoo founder, Julie Peasley

The hunt for the Higgs particle may have come to grinding halt until 2009, but that doesn’t mean you can’t discover the elusive particle for yourself. In fact, it’s not just the Higgs boson that awaits discovery in the zoo of Standard Model particles. And what a zoo it is! We have protons, neutrons, the quarks that make up said hadrons; plus all the force carriers, neutrinos, photons, electrons and anti-particles. There is a delicious and varied array of subatomic particles out there, but they are too small for us to see. Wouldn’t it be interesting to know what these quanta actually look like?

It seems that Particle Zookeeper Julie Peasley has an intimate connection with the tiny “beings” that make up all known matter in the Universe. She has single-handedly set up her own business putting faces to the complex particles, giving us a unique view into the quantum world we would otherwise forget in the soup of theoretical physics equations. The Particle Zoo is a Los Angeles company, where Julie brings particles to life in her “sweatshop of one,” sewing beautifully-made plushie toys of all the Standard Model particles so we can collect them all…
Continue reading “Particle Zoo: The Higgs Boson For Sale”