Do Hadrons Feel Pain?

Catchy slogan at the protest (BBSpot)
Or else... what? (BBSpot)

Hold on, I’ve just found out some worrying news from the Large Hadron Collider (LHC). This mammoth experiment goes online in one month and two days and I don’t think we’ve fully grasped what this machine is going to do.

It will kill hadrons, by their millions.

I know, I felt the same way. What kind of deprived mind would think up such a plan? There we are being told by the physicists that colliding hadrons at high energies will somehow benefit mankind. We are also being told by the doomsayers that the LHC will create a micro black hole, killing us all. But so far there has been little thought for the tiny elemental particles caught in the middle of all this. Do you think they want to be accelerated to the point where they resemble a wave more than a particle? No. Do you think they want to be bashed at high speed, splattering their innards around the inside of a detector chamber? No.

Please, spare a thought for all those innocent quarks, they don’t have a voice…

(Oh dear, here we go again…)
Continue reading “Do Hadrons Feel Pain?”


New Exotic Particle May Explain Milky Way Gamma-Ray Phenomenon

Chandra observation of Cassiopeia A, a young supernova remnant in our galaxy - a prominent source of high-energy particles (NASA/CXC/MIT/UMass Amherst/M. D. Stage et al.)
Chandra observation of Cassiopeia A, a young supernova remnant in our galaxy - a prominant source of high-energy particles (NASA/CXC/MIT/UMass Amherst/M. D. Stage et al.)

There is something strange happening in the core of the Milky Way. A space observatory measuring the energy and distribution of gamma-rays in the cosmos has made an unexpected (and perplexing) discovery. It would seem there is a very high proportion of gamma-ray photons emanating from our galactic core with a very distinctive signature; they have a precise energy of 511 keV (8×10-14 Joules), and there’s a lot of them. So what could possibly be producing these 511 keV gamma-rays? It turns out, 511 keV is a magic number; it is the exact rest mass energy of a positron (the antimatter particle of the electron). So this is fairly conclusive evidence that positrons are dying (i.e. annihilating) in vast numbers in our galactic nuclei. Still, this is of little help to astrophysicists as there is no known mechanism for producing such high numbers of annihilating positrons. Ideas have been put forward, but there’s a new possibility, involving some new particle physics and some lateral thinking…
Continue reading “New Exotic Particle May Explain Milky Way Gamma-Ray Phenomenon”

Will the LHC Peel Open Some New Dimensions?

A possible visualization of microscopic extra dimensions. Source:
A possible visualization of microscopic extra dimensions. Source:

As we near the Large Hadron Collider’s (LHC) maiden relativistic collision later this year, speculation and excitement continues to mount. There are a host of possibilities as to what we may observe from the most powerful, focused collisions ever carried out in a laboratory environment. Fundamentally, the search for the Higgs boson will be taken to a new level, but there may be a few surprises for the particle physicists analysing the detector data. What if the LHC uncovers an alternative to the Higgs boson? What if the “standard model” of quantum theory isn’t to a universal standard? Putting the Higgs boson to one side, forgetting the exciting possibility of a micro-black hole (and confirmation of Hawking Radiation) and leaving the production of wormholes and stranglets in the “unlikely” drawer, what possibility intrigues me the most? The discovery of microscopic, curled-up dimensions the LHC may unravel as it focuses its energy on scales previously unthinkable…
Continue reading “Will the LHC Peel Open Some New Dimensions?”

Are Primordial Black Holes Antimatter Factories?

A black hole, artist impression (NASA)
A black hole, artist impression (NASA)

Could small, primordial black holes be efficient antimatter generators? It is well known that cool planetary bodies, surrounded by equal numbers of protons and electrons in thermal equilibrium, will eventually become positively charged. Why? Because electrons, with their low mass, have a higher velocity than the larger protons. Although they undergo the same gravitational acceleration, electrons are able to attain “escape velocity” more readily as the more massive protons get stuck in the gravitational well. The result? The planet has a net positive charge as more electrons, than proton escape into space.

Primordial black holes are thought to exist in our Universe (left-overs from the Big Bang), and although they may be small, they may influence ionized cosmic clouds in the same way, more electrons escape than protons left behind. However, should a threshold be reached, the extreme gravitational force surrounding the black hole could set up a powerful electrostatic field, kick-starting a strange quantum phenomenon that generates the electron’s anti-matter partner (the positron) from the vacuum of space…
Continue reading “Are Primordial Black Holes Antimatter Factories?”

Daily Roundup: Astrium Spacecraft Mass Production, Saturn’s Rings and Quantum Communications

Astriums new concept for space tourism. Image credit: Astrium/Marc Newson. Source: BBC

It looks like things are really beginning to develop for the space tourism era. European rocket manufacturer Astrium has announced plans to develop the next generation of small space planes capable of sending 5 people into space. This design is different from the rest as it will take-off and land conventionally and will use jets for atmospheric flight but blast into space with a powerful oxygen-methane rocket. The promo video is also pretty exciting, documenting the two hour flight by means of a simulation…
Continue reading “Daily Roundup: Astrium Spacecraft Mass Production, Saturn’s Rings and Quantum Communications”