Particle Zoo: The Higgs Boson For Sale

Collect them all! The Standard Model of plushie particles (© Particle Zoo & Julie Peasley)
Collect them all! The Standard Model of plushie particles (© Particle Zoo & Julie Peasley)

Astroengine exclusive interview with Particle Zoo founder, Julie Peasley

The hunt for the Higgs particle may have come to grinding halt until 2009, but that doesn’t mean you can’t discover the elusive particle for yourself. In fact, it’s not just the Higgs boson that awaits discovery in the zoo of Standard Model particles. And what a zoo it is! We have protons, neutrons, the quarks that make up said hadrons; plus all the force carriers, neutrinos, photons, electrons and anti-particles. There is a delicious and varied array of subatomic particles out there, but they are too small for us to see. Wouldn’t it be interesting to know what these quanta actually look like?

It seems that Particle Zookeeper Julie Peasley has an intimate connection with the tiny “beings” that make up all known matter in the Universe. She has single-handedly set up her own business putting faces to the complex particles, giving us a unique view into the quantum world we would otherwise forget in the soup of theoretical physics equations. The Particle Zoo is a Los Angeles company, where Julie brings particles to life in her “sweatshop of one,” sewing beautifully-made plushie toys of all the Standard Model particles so we can collect them all…
Continue reading “Particle Zoo: The Higgs Boson For Sale”

A Strange Connection: Could Nuclear Decay Rates be Influenced by Distance From the Sun?

The decay rate of the radioactive isotope 32Si appears to correlate with orbital distance from the Sun (Jenkins et al. 2008)
The decay rate of the radioactive isotope 32Si appears to correlate with orbital distance from the Sun (Jenkins et al. 2008)

Wouldn’t you think that the decay rates of isotopes found on Earth would remain fairly constant under controlled conditions? Statistically-speaking one would be able to make a pretty good prediction about a radioactive element’s decay rate at any point in the future, regardless of external influences. However, a group of researchers have found the radioisotope decay rates of radium (226Ra) and silicon (32Si) varies periodically. This may not seem strange at first, but when measured, this fluctuation in decay rate has a period of approximately a year. Does this relate to the Earth’s position in its orbit? Does this mean radioactive decay rates are influenced depending on how far the element is from the Sun? Perhaps decay rates are not as predictable as we think…
Continue reading “A Strange Connection: Could Nuclear Decay Rates be Influenced by Distance From the Sun?”

What is the Higgs Boson?

Artist rendition of Higgs bosons generated after a particle collision. Created for Niels Bohr institute by artist-in-residence Mette Høst
Artist rendition of Higgs bosons generated after a particle collision. Created for Niels Bohr institute by artist-in-residence Mette Høst

Billions of Euros have been ploughed into the construction of the largest experiment known in the history of mankind. The Large Hadron Collider (officially due to be “switched on” September 10th 2008) will eventually create proton-proton collision energies near the 14 TeV mark by the end of this decade. This is all highly impressive; already the applications of the LHC appear to be endless, probing smaller and smaller scales with bigger and bigger energies. But how did the LHC secure all that funding? After all, the most expensive piece of lab equipment must be built with a purpose? Although the aims are varied and far-reaching, the LHC has one key task to achieve: Discover the Higgs Boson, the world’s most sought-after particle. If discovered, key theories in particle physics and quantum dynamics will be proven. If it isn’t found by the LHC, perhaps our theories are wrong, and our view of the Universe needs to be revolutionized… or the LHC needs to be more powerful.

Either way, the LHC will revolutionize all facets of physics. But what is the Higgs boson? And why in the hell is it so important?

I’ve read many very interesting articles about the Higgs boson and what its discovery will do for mankind. However, many of these texts are very hard to understand by non-specialists, particularly by the guys-at-the-top (i.e. the politicians who approve vast amounts of funding for physics experiments). The LHC physicists obviously did a very good job on Europe’s leaders so this gargantuan particle accelerator could secure billions of euros/dollars/pounds to be built.

There is a classic physics-politics outreach example that has become synonymous with LHC funding. On trying to acquire UK funding for the LHC project in 1993, physicists had to derive a way of explaining what the Higgs boson was to the UK Science Minister, William Waldegrave. This quasi-political example is wonderfully described by David J. Miller; Bryan Cox also discusses the same occasion in this outstanding TED lecture.

What is the Higgs boson? The Short Answer
Predicted by the Standard Model of particle physics, the Higgs boson is a particle that carries the Higgs field. The Higgs field is theorized to permeate through the entire Universe. As a massless particle passes through the Higgs field, it accumulates it, and the particle gains mass. Therefore, should the Higgs boson be discovered, we’ll know why matter has mass.

What is the Higgs boson? The Long Answer
Firstly we must know what the “Standard Model” is. In quantum physics, there are basically six types of quarks, six types of leptons (all 12 are collectively known as “fermions”) and four bosons. Quarks are the building blocks of all hadrons in the Universe (they are contained inside common hadrons like protons and neutrons) and they can never exist as a single entity in nature. The “glue” that holds hadrons together (thus bonding quarks together) is governed by the “strong force,” a powerful force which acts over very small distances (nucleon-scales). The strong force is delivered by one of the four bosons called the “gluon.” When two quarks combine to form a hadron, the resulting particle is called a “meson“; when three combine, the resulting particle is called a “baryon.”

The Standard Model. Including 6 quarks, 6 leptons and four bosons.
The Standard Model. Including 6 quarks, 6 leptons and four bosons. Source:

In addition to six quarks in the Standard Model, we have six leptons. The electron, muon and tau particles plus their neutrinos; the electron neutrino, muon neutrino and tau neutrino. Add to this the four bosons: photon (electromagnetic force), W and Z bosons (weak force) and gluons (strong force), we have all the components of the Standard Model.

However, there’s something missing. What about gravity? Although very weak on quantum scales, this fundamental force cannot be explained by the Standard Model. The gravitational force is mediated by the hypothetical particle, the graviton.

The Higgs Field
The Standard Model has its shortcomings (such as the non-inclusion of the graviton) but ultimately it has elegantly described many fundamental properties of the quantum and cosmological universe. However, we need to find a way of describing how these Standard Model particles have (and indeed, have no) mass.

Permeating through all the theoretical calculations of the Standard Model is the “Higgs field.” It is predicted to exist, giving quarks and gluons their large masses; but also giving photons and neutrinos little or no mass. The Higgs field forms the basic underlying structure of the Universe; it has to, otherwise “mass” would not exist (if the Universe is indeed governed by the Standard Model).

People evenly distributed in a room, akin to the Higgs field (CERN)
People evenly distributed in a room, akin to the Higgs field (CERN)

As a particle travels through the Higgs field (which can be thought of as a 3D lattice filling the Universe, from the vacuum of space to the centre of stars), it causes a distortion in the field. As it moves, the particle will cause the Higgs field to cluster around the particle. The more clustering there is, the more mass the particle will accumulate. Going back to David J. Miller’s 1993 quasi-political description of the Higgs field, his analogy of the number of people attracted to a powerful politician rings very similar to what actually happens in the Higgs field as a particle passes through it (see the cartoon left and below).

Using the cartoon of Margaret Thatcher, ex-UK Prime Minister, entering a crowded room, suddenly makes sense. As Thatcher enters the room, although the people are evenly distributed across the floor, Thatcher will soon start accumulating delegates wanting to talk to her as she tries to walk. This effect is seen all the time when paparazzi accumulate around a celebrity here in Los Angeles; the longer the celeb walks within the “paparazzi field,” more photographers and reporters accumulate.

Then Thatcher enters the room, people gather, mass increases (CERN)
Then Thatcher enters the room, people gather, mass increases (CERN)

Pretty obvious so far. The Thatcher analogy worked really well in 1993 and the paparazzi analogy works well today. But, critically, what happens when the individual accumulates all these people (i.e. increase mass)? If they are able to travel at the same speed across the room, the whole ensemble will have greater momentum, thus will be harder to slow down.

The Higgs Boson
So going back to our otherwise massless particle travelling through the Higgs field, as it does so, it distorts the surrounding field, causing it to bunch up around the particle, thus giving it mass and therefore momentum. Observations of the weak force (exchanged by the W and Z particles) cannot be explained without the inclusion of the Higgs field.

OK, so we have a “Higgs field,” where does the “Higgs boson” come into it? The Higgs particle is simply the boson that carries the Higgs field. So if we were to dissect a particle (like colliding it inside a particle accelerator), we’d see a Higgs boson carrying the Higgs field. This boson can be called a Higgs particle. If the Higgs particle is just an enhancement in the Higgs field, there could be many different “types” of Higgs particles, of varying energies.

British particle physicist Peter Higgs (as seen in the 1960s), Higgs boson namesake and lead researcher on the Higgs mechanism (Peter Tuffy)
British particle physicist Peter Higgs (as seen in the 1960s), Higgs boson namesake and lead researcher on the Higgs mechanism (Peter Tuffy)

This is where the LHC comes in. We know that the Higgs boson governs the amount of mass a particle can have. It is therefore by definition “massive.” The more massive a particle, the more energy it has (i.e. E = mc2), so in an effort to isolate the Higgs particle, we need a highly energetic collision. Previous particle accelerator experiments have not turned up evidence for the Higgs boson, but this null result sets a lower limit on the mass of the Higgs boson. This currently holds at a rest-mass energy of 114 GeV (meaning the lower limit for the Higgs boson will be greater than 114 GeV). It is hoped that the high energy collisions possible by the LHC will confirm that the Higgs exists at higher masses (predicted in the mass range of 0.1-1 TeV).

So why is the Higgs boson important?
The Higgs boson is the last remaining particle of the Standard Model that has not been observed; all the other fermions and bosons have been proven to exist through experiment. If the LHC does focus enough energy to generate an observable Higgs boson with a mass over 114 GeV, the Standard Model will be complete and we’ll know why matter has mass. Then we will be working on validating the possibility of supersymmetry and string theory… but we’ll leave that for another day…

But does the Higgs boson give hadrons the ability to feel pain? I doubt it…

Special thanks to regular Astroengine reader Hannah from São Paulo, Brazil for suggesting this article, I hope it went to some way of explaining the general nature of the Higgs boson…

Do Hadrons Feel Pain?

Catchy slogan at the protest (BBSpot)
Or else... what? (BBSpot)

Hold on, I’ve just found out some worrying news from the Large Hadron Collider (LHC). This mammoth experiment goes online in one month and two days and I don’t think we’ve fully grasped what this machine is going to do.

It will kill hadrons, by their millions.

I know, I felt the same way. What kind of deprived mind would think up such a plan? There we are being told by the physicists that colliding hadrons at high energies will somehow benefit mankind. We are also being told by the doomsayers that the LHC will create a micro black hole, killing us all. But so far there has been little thought for the tiny elemental particles caught in the middle of all this. Do you think they want to be accelerated to the point where they resemble a wave more than a particle? No. Do you think they want to be bashed at high speed, splattering their innards around the inside of a detector chamber? No.

Please, spare a thought for all those innocent quarks, they don’t have a voice…

(Oh dear, here we go again…)
Continue reading “Do Hadrons Feel Pain?”

New Exotic Particle May Explain Milky Way Gamma-Ray Phenomenon

Chandra observation of Cassiopeia A, a young supernova remnant in our galaxy - a prominent source of high-energy particles (NASA/CXC/MIT/UMass Amherst/M. D. Stage et al.)
Chandra observation of Cassiopeia A, a young supernova remnant in our galaxy - a prominant source of high-energy particles (NASA/CXC/MIT/UMass Amherst/M. D. Stage et al.)

There is something strange happening in the core of the Milky Way. A space observatory measuring the energy and distribution of gamma-rays in the cosmos has made an unexpected (and perplexing) discovery. It would seem there is a very high proportion of gamma-ray photons emanating from our galactic core with a very distinctive signature; they have a precise energy of 511 keV (8×10-14 Joules), and there’s a lot of them. So what could possibly be producing these 511 keV gamma-rays? It turns out, 511 keV is a magic number; it is the exact rest mass energy of a positron (the antimatter particle of the electron). So this is fairly conclusive evidence that positrons are dying (i.e. annihilating) in vast numbers in our galactic nuclei. Still, this is of little help to astrophysicists as there is no known mechanism for producing such high numbers of annihilating positrons. Ideas have been put forward, but there’s a new possibility, involving some new particle physics and some lateral thinking…
Continue reading “New Exotic Particle May Explain Milky Way Gamma-Ray Phenomenon”

Will the LHC Peel Open Some New Dimensions?

A possible visualization of microscopic extra dimensions. Source:
A possible visualization of microscopic extra dimensions. Source:

As we near the Large Hadron Collider’s (LHC) maiden relativistic collision later this year, speculation and excitement continues to mount. There are a host of possibilities as to what we may observe from the most powerful, focused collisions ever carried out in a laboratory environment. Fundamentally, the search for the Higgs boson will be taken to a new level, but there may be a few surprises for the particle physicists analysing the detector data. What if the LHC uncovers an alternative to the Higgs boson? What if the “standard model” of quantum theory isn’t to a universal standard? Putting the Higgs boson to one side, forgetting the exciting possibility of a micro-black hole (and confirmation of Hawking Radiation) and leaving the production of wormholes and stranglets in the “unlikely” drawer, what possibility intrigues me the most? The discovery of microscopic, curled-up dimensions the LHC may unravel as it focuses its energy on scales previously unthinkable…
Continue reading “Will the LHC Peel Open Some New Dimensions?”

Are Primordial Black Holes Antimatter Factories?

A black hole, artist impression (NASA)
A black hole, artist impression (NASA)

Could small, primordial black holes be efficient antimatter generators? It is well known that cool planetary bodies, surrounded by equal numbers of protons and electrons in thermal equilibrium, will eventually become positively charged. Why? Because electrons, with their low mass, have a higher velocity than the larger protons. Although they undergo the same gravitational acceleration, electrons are able to attain “escape velocity” more readily as the more massive protons get stuck in the gravitational well. The result? The planet has a net positive charge as more electrons, than proton escape into space.

Primordial black holes are thought to exist in our Universe (left-overs from the Big Bang), and although they may be small, they may influence ionized cosmic clouds in the same way, more electrons escape than protons left behind. However, should a threshold be reached, the extreme gravitational force surrounding the black hole could set up a powerful electrostatic field, kick-starting a strange quantum phenomenon that generates the electron’s anti-matter partner (the positron) from the vacuum of space…
Continue reading “Are Primordial Black Holes Antimatter Factories?”

Daily Roundup: Astrium Spacecraft Mass Production, Saturn’s Rings and Quantum Communications

Astriums new concept for space tourism. Image credit: Astrium/Marc Newson. Source: BBC

It looks like things are really beginning to develop for the space tourism era. European rocket manufacturer Astrium has announced plans to develop the next generation of small space planes capable of sending 5 people into space. This design is different from the rest as it will take-off and land conventionally and will use jets for atmospheric flight but blast into space with a powerful oxygen-methane rocket. The promo video is also pretty exciting, documenting the two hour flight by means of a simulation…
Continue reading “Daily Roundup: Astrium Spacecraft Mass Production, Saturn’s Rings and Quantum Communications”