How Is Stardust Created? #TRIUMFology

I worked on TRIUMF’s Five-Year Plan (2020-2025) last year, so Astroengine is featuring a few physicsy articles that were included in the document to tell the center’s story

When (neutron) stars collide… [NASA/CXC/M.WEISS]

Last year, I had the honor to help write TRIUMF’s Five-Year Plan for 2020-2025. TRIUMF is Canada’s particle accelerator center, located next to the University of British Columbia’s campus in Vancouver, and it tackles some of the biggest problems facing physics today.

Every five years, research facilities in Canada prepare comprehensive documents outlining their strategies for the next five. In this case, TRIUMF asked me to join their writer team and I was specifically tasked with collaborating with TRIUMF’s management to develop and write the Implementation Plan (PDF) — basically an expanded version of the Strategic Plan (PDF) — detailing the key initiatives the center will carry out between 2020 and 2025.

As the location of the world’s largest and oldest operational cyclotron, the center is a multi-faceted physics lab with hundreds of scientists and engineers working on everything from understanding the origins of matter to developing radiopharmaceuticals to treat late-stage cancers. I only had a vague understanding about the scope of TRIUMF’s work before last year, but, as the months progressed after visiting the center in April 2018, I was treated to an unparalleled learning experience that was as dizzying as it was rewarding.

As a science communicator, I wanted to understand what makes TRIUMF “tick,” so I decided to speak to as many TRIUMF scientists, engineers, collaborators, and managers as possible. During my interviews, I was excited and humbled to hear stories of science breakthroughs, personal achievements and mind-bending physics concepts, so I included a series of miniature articles to complement the Implementation Plan’s text. As the Five-Year Plan is a public document (you can download the whole Plan here, in English and French), I’ve been given permission by TRIUMF to re-publish these articles on Astroengine.

“Beyond Multimessenger Astronomy”

Background: To kick off the series, we’ll begin with nuclear science. Specifically, how astrophysical processes create heavy elements and how TRIUMF studies the formation of radioisotopes in the wake of neutron star collisions.

After the 2017 LIGO detection of gravitational waves caused by the collision of two neutron stars (get the details here), and the near-simultaneous detection of a gamma-ray burst from the same location, scientists heralded a new era for astronomy — nicknamed “multimessenger astronomy,” where gravitational wave and electromagnetic signals measured at the same time from the same event can create a new understanding of astrophysical processes. In this case, as it was confirmed to be a neutron star merger — an event that is theorized to generate r-process elements — spectroscopic analysis of the GRB’s afterglow confirmed that, yes, neutron star collisions do indeed create the neutron-rich breeding ground for heavy elements (like gold and platinum). Although multimessenger astronomy may be a new thing, TRIUMF has been testing these theories in the laboratory environment for years, using rare isotope beams colliding into targets that mimic the nuclear processes that produce the heavy elements in our universe. This process is known as nucleogenesis, and it’s how our cosmos forges the elements that underpin stardust, the stuff that makes the planets, stars, and the building blocks of life.

For this mini-article, I had a fascinating chat with Dr. Iris Dillmann, a nuclear physics research scientist at TRIUMF. I’ve lightly edited the text for context and clarity. The original article can be found on page 22 of the Implementation Plan (PDF).

The GRIFFIN experiment is part of the ISAC facility that uses rare-isotope beams to carry out physics experiments [TRIUMF]

The article: TRIUMF’s investigations into neutron-rich isotopes were well-established before the advent of multi-messenger astronomy. “It was a cherry on top of the cake to get this confirmation, but the experimental program was already going on,” said Dillmann.

“What we do is multi-messenger nuclear physics; we are not looking directly into stars. TRIUMF is doing experiments here on Earth.”

Whereas the combination of gravitational waves and electromagnetic radiation from astrophysical events gives rise to a new era of multi-messenger astronomy, TRIUMF’s Isotope Separator and Accelerator (ISAC) facilitates the investigation of heavy isotopes through an array of nuclear physics experiments all under one roof that can illuminate the characteristics of isotopes that have been identified in neutron star mergers.

“For example, astronomers can identify one interesting isotope and realize that they need more experimental information on that one isotope,” she said. “We then have the capability to go through the different setups and, say, measure the mass of the isotope with the TRIUMF Ion Trap for Atomic and Nuclear Science (TITAN) experiment’s Penning trap.”

From there, Dillmann added, the Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) experiment can use decay spectroscopy to investigate the half-lives of rare isotope beams and their underlying nuclear structure. Other nuclear properties such as moments and charge radii can be measured using laser spectroscopy. TRIUMF scientists can also directly measure the reaction cross-sections of explosive hydrogen and helium burning in star explosions with the Detector of Recoils And Gammas Of Nuclear reactions experiment (DRAGON) and the TRIUMF UK Detector Array (TUDA).

With ISAC, all these measurements are carried out in one place, where teams from each experiment work side by side to solve problems quickly and collaborate effectively. “We have the setups in the hall to investigate an isotope from different perspectives to try to get a complete picture just from one department — the nuclear physics department,” said Dillmann.

*****

Why “TRIUMFology”?

…because I have a “PhD” in TRIUMFology! Not sure if I can include it in my resume, but I love the honor all the same. Thanks Team TRIUMF!

Gravitational Waves Might Reveal Primordial Black Hole Mergers Just After the Big Bang

Web_C0288811-Black_hole_merger_and_gravitational_waves-SPL
RUSSELL KIGHTLEY/SCIENCE PHOTO LIBRARY

Imagine the early universe: The first massive stars sparked to life and rapidly consumed their supply of hydrogen. These “metal poor” stars lived hard and died fast, burning quickly and then exploding as powerful supernovas. This first population of stars seeded the universe with heavier elements (i.e. elements heavier than helium, elements known as “metals” by astronomers) and their deaths created the first stellar-mass black holes.

But say if there were black holes bumbling around the universe before the first supernovae? Where the heck did they come from?

Quantum Fluctuations

Some models of universal evolution suggests that immediately after the Big Bang, some 13.82 billion years ago, quantum fluctuations created pockets of dense matter as the universe started to expand. As inflation occurred and the universe cooled, these density fluctuations formed the vast large-scale structure of the universe that we observe today. These cosmological models suggest the early quantum density fluctuations may have been dramatic enough to create black holes — known as primordial black holes — and these ancient Big Bang remnants may still exist to this day.

The theoretical models surrounding the genesis of primordial black holes, however, are hard to test as observing the universe immediately after the Big Bang is, needless to say, very difficult. But now we know gravitational waves exist and physicists have detected the space-time ripples generated by the collision and merger of stellar-mass black holes and neutron stars, astronomers have an observational tool at their disposal.

Simple Idea, Not-So-Simple Implementation

In a new study published in Physical Review Letters, researchers have proposed that if we have the ability to detect gravitational waves produced before the first stars died, we may be able to carry out astronomical archaeological dig of sorts to possibly find evidence of these ancient black holes.

“The idea is very simple,” said physicist Savvas Koushiappas, of Brown University, in a statement. “With future gravitational wave experiments, we’ll be able to look back to a time before the formation of the first stars. So if we see black hole merger events before stars existed, then we’ll know that those black holes are not of stellar origin.”

Primordial black holes were first theorized by Stephen Hawking and others in the 1970’s, but it’s still unknown if they exist or whether we could even distinguish the primordial ones from the garden variety of stellar-mass black holes (it’s worth noting, however, that primordial black holes would have a range of masses and not restricted to stellar masses). Now we can detect gravitational waves, however, this could change as gravitational wave detector sensitivity increases, scientists will probe more distant (and therefore more ancient) black hole mergers. And, if we can detect gravitational waves originating from black hole mergers younger than 65 million years after the Big Bang, the researchers say, those black holes wouldn’t have a stellar origin as the first stars haven’t yet died — they could have only been born from the quantum mess immediately after the birth of our universe.

Read more about this fascinating line of investigation in the Brown University press release.

How Gravitational Waves Led Us to Neutron Star Gold

grav-neutron-stars
Artist impression of a violent neutron star collision (Dana Berry, SkyWorks Digital, Inc.)

One hundred and thirty million years ago in a galaxy 130 million light-years away, two neutron stars met their fate, merging as one. Trapped in a gravitational embrace, these two stellar husks spiraled closer and closer until they violently ripped into one another, causing a detonation that reverberated throughout the cosmos.

On August 17, the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO) and Italian Virgo gravitational wave detector felt the faint ripples in spacetime from that ancient neutron star collision washing through our planet. Until now, LIGO and Virgo have only confirmed the collisions and mergers of black holes, so the fact that a nearby (a relative term in this case) neutron star merger had been detected was already historic.

But the implications for this particular neutron star signal, which is comparatively weak in comparison with the black hole mergers that have come before it, are so profound that I’ve been finding it hard to put this grand discovery into words (though I have tried).

Why It Matters

With regards to gravitational waves, I feel I’ve described each gravitational wave discovery as “historic” and “a new era for astronomy” since their first detection on Sept. 15, 2015, but the detection of GW170817 may well trump all that have come before it, even though the signal was generated by neutron stars and not black hole heavyweights.

The thing with black holes is that when they collide and merge, they don’t necessarily produce electromagnetic radiation (i.e. visible light, X-rays or infrared radiation). They can go “bump” in the cosmic night and no intelligent being with a conventional telescope would see it happen. But in the the gravitational domain, black hole mergers echo throughout the universe; their gravitational waves travel at the speed of light, warping spacetime as they propagate. To detect these “invisible” waves, we must build instruments that can “see” the infinitesimal wobbles in the fabric of spacetime itself, and this is where laser interferometry comes in.

Very precise lasers are fired down miles-long tunnels in “L” shaped buildings in the two LIGO detectors (in Washington and Louisiana) and the Virgo detector near Pisa. When gravitational waves travel through us, these laser interferometers can measure the tiny spacetime warps. The more detectors measuring the same signal means a more precise observation and scientists can then work out where (and when) the black hole merger occurred.

There are many more details that can be gleaned from the gravitational wave signal from black hole mergers, of course — including the progenitor black holes’ masses, the merged mass, black hole spin etc. — but for the most part, black hole mergers are purely a gravitational affair.

Neutron stars, however, are a different beast and, on Aug. 17, it wasn’t only gravitational wave detectors that measured a signal from 130 million light-years away; space telescopes on the lookout for gamma-ray bursts (GRBs) also detected a powerful burst of electromagnetic radiation in the galaxy of NGC 4993, thereby pinpointing the single event that generated the gravitational waves and the GRB.

And this is the “holy shit” moment.

As Caltech’s David H. Reitze puts it: “This detection opens the window of a long-awaited ‘multi-messenger’ astronomy.”

What Reitze is referring to is that, for the first time, both gravitational waves and electromagnetic waves (across the EM spectrum) have been observed coming from the same astrophysical event. The gravitational waves arrived at Earth slightly before the GRB was detected by NASA’s Fermi and ESA’s INTEGRAL space telescopes. Both space observatories recorded a short gamma-ray burst, a type of high-energy burst that was theorized (before Aug. 17) to be produced by colliding neutron stars.

Mass_plot_black_no_gap
The growing family of merging black holes and neutron stars observed with gravitational waves (LIGO-Virgo/Frank Elavsky/Northwestern University)

Now scientists have observational evidence that these types of GRBs are produced by colliding neutron stars as the gravitational wave fingerprint unquestionably demonstrates the in-spiraling and merger of two neutron stars. This is a perfect demonstration of multi-messenger astronomy; where an energetic event can be observed simultaneously in EM and gravitational waves to reveal untold mysteries of the universe’s most energetic events.

Another Nod to Einstein

The fact that the gravitational waves and gamma-rays arrived at approximately the same time is yet another nod to Einstein’s general relativity. The century-old theory predicts that gravitational waves should travel at the speed of light and, via this brand spanking new way of doing multi-messenger astronomy, physicists and astronomers have again bolstered relativity with observational evidence.

But why did the gravitational waves arrive slightly before the GRB? Well, NASA’s Fermi team explains: “Fermi’s [Gamma-ray Burst Monitor instrument] saw the gamma-ray burst after the [gravitational wave] detection because the merger happened before the explosion,” they said in a tweet.

In other words, when the two neutron stars collided and merged, the event immediately dissipated energy as gravitational waves that were launched through spacetime at the speed of light — that’s the source of GW170817 — but the GRB was generated shortly after.

Enter the Kilonova

As the neutron stars smashed together, huge quantities of neutron star matter were inevitably blasted into space, creating a superheated, dense volume of free neutrons. Neutrons are subatomic particles that form the building blocks of atoms and if the conditions are right, the neutron star debris will undergo rapid neutron capture process (known as “r-process”) where neutrons combine with one another faster than the newly-formed radioactive particles can decay. This mechanism is responsible for synthesizing elements heavier than iron (elements lighter than iron are formed through stellar nucleosynthesis in the cores of stars).

kilonova
Artist impression of colliding neutron stars generating gravitational waves and a “kilonova” (NSF/LIGO/Sonoma State University/A. Simonnet)

For decades astronomers have been searching for observational evidence of the r-process in action and now they have it. Soon after the merger, massive amounts of debris erupted in a frenzy of heavy element creation, triggering an energetic eruption known as a “kilonova” that was seen as a short GRB. The GRB was cataloged as “SSS17a.”

The Golden Ticket

Follow-up observations by the Hubble Space Telescope, Gemini Observatory and the ESO’s Very Large Telescope have all detected spectroscopic signatures in the afterglow consistent with the r-process taking place at the site of the kilonova, meaning heavy elements are being formed and, yes, it’s a goldmine. As in: there’s newly-synthesized gold there. And platinum. And all the other elements heavier than iron that aren’t quite so sexy.

And there’s lots of it. Researchers estimate that that single neutron star collision produced hundreds of Earth-masses of gold and platinum and they think that neutron star mergers could be the energetic process that seed the galaxies with heavy elements (with supernovas coming second).

So, yeah, it’s a big, big, BIG discovery that will reverberate for the decades to come.

The best thing is that we now know that our current generation of advanced gravitational wave detectors are sensitive enough to not only detect black holes merging billions of light-years away, but also detect the nearby neutron stars that are busy merging and producing gold. As more detectors are added and as the technology and techniques mature, we’ll be inundated with merging events big and small, each one teaching us something new about our universe.

Gravity and the Dark Side of the Cosmos: LIVE Perimeter Institute Lecture

Streaming LIVE here, today, at 4 p.m. PDT/7 p.m. EDT/11 p.m. GMT

The Perimeter Institute’s public lecture series is back! At 7 p.m. EDT (4 p.m. PDT) today, Erik Verlinde of the University of Amsterdam will ask: Are we standing on the brink of a new scientific revolution that will radically change our views on space, time, and gravity? Specifically, Verlinde will discuss the possibility that gravity may be an emergent phenomena and not a fundamental force of nature. Ohh, interesting.

The Perimeter Institute for Theoretical Physics (in Ontario, Canada) always puts on a superb production and you can watch Dr Verlinde’s talk via the live feed above. You can also participate via social media using the hashtag #piLIVE and follow @perimeter and @erikverlinde on Twitter.

Watch the preview:

We’re Really Confused Why Supermassive Black Holes Exist at the Dawn of the Cosmos

eso1229a
ESO

Supermassive black holes can be millions to billions of times the mass of our sun. To grow this big, you’d think these gravitational behemoths would need a lot of time to grow. But you’d be wrong.

When looking back into the dawn of our universe, astronomers can see these monsters pumping out huge quantities of radiation as they consume stellar material. Known as quasars, these objects are the centers of primordial galaxies with supermassive black holes at their hearts.

Now, using the twin W. M. Keck Observatory telescopes on Hawaii, researchers have found three quasars all with billion solar mass supermassive black holes in their cores. This is a puzzle; all three quasars have apparently been active for short periods and exist in an epoch when the universe was less than a billion years old.

Currently, astrophysical models of black hole accretion (basically models of how fast black holes consume matter — likes gas, dust, stars and anything else that might stray too close) woefully overestimate how long it takes for black holes to grow to supermassive proportions. What’s more, by studying the region surrounding these quasars, researchers at the Max Planck Institute for Astronomy (MPIA) in Germany have found that these quasars have been active for less than 100,000 years.

To put it mildly, this makes no sense.

“We don’t understand how these young quasars could have grown the supermassive black holes that power them in such a short time,” said lead author Christina Eilers, a post-doctorate student at MPIA.

Using Keck, the team could take some surprisingly precise measurements of the quasar light, thereby revealing the conditions of the environment surrounding these bright baby galaxies.

discoveryint
MPIA

Models predict that after forming, quasars began funneling huge quantities of matter into the central black holes. In the early universe, there was a lot of matter in these baby galaxies, so the matter was rapidly consumed. This created superheated accretion disks that throbbed with powerful radiation. The radiation blew away a comparatively empty region surrounding the quasar called a “proximity zone.” The larger the proximity zone, the longer the quasar had been active and therefore the size of this zone can be used to gauge the age (and therefore mass) of the black hole.

But the proximity zones measured around these quasars revealed activity spanning less than 100,000 years. This is a heartbeat in cosmic time and nowhere near enough time for a black hole pack on the supermassive pounds.

“No current theoretical models can explain the existence of these objects,” said Joseph Hennawi, who led the MPIA team. “The discovery of these young objects challenges the existing theories of black hole formation and will require new models to better understand how black holes and galaxies formed.”

The researchers now hope to track down more of these ancient quasars and measure their proximity zones in case these three objects are a fluke. But this latest twist in the nature of supermassive black holes has only added to the mystery of how they grow to be so big and how they relate to their host galaxies.

Supermassive black hole with torn-apart star (artist’s impress
A supermassive black hole consumes a star in this artist’s impression (ESO)

These questions will undoubtedly reach fever-pitch later this year when the Event Horizon Telescope (EHT) releases the first radio images of the 4 million solar mass black hole lurking at the center of our galaxy. Although it’s a relative light-weight among supermassives, direct observations of Sagittarius A* may uncover some surprises as well as confirm astrophysical models.

But as for how supermassive black holes can possibly exist at the dawn of our universe, we’re obviously missing something — a fact that is as exciting as it is confounding.

So it Could be a ‘Supervoid’ That’s Causing the Mysterious CMB ‘Cold Spot’

Only last month I recorded a DNews video about the awesome possibilities of the “Cold Spot” that sits ominously in the cosmic microwave background (CMB) anisotropy maps (anisotropies = teenie tiny temperature variations in the CMB).

I still hold onto the hope that this anomalous low temperature region is being caused by a neighboring parallel universe squishing up against our own. But evidence is mounting for there actually being a vast low density region — known as a “supervoid” — between us and that Cold Spot.

And that’s crappy news for my dreams of cosmologists finding bona fide observational clues of the multiverse hypothesis any time soon. The Cold Spot could just be the frigid fingerprint of this supervoid etched into our observations of the CMB.

But as this supervoid could be as wide as 1.8 billion light-years, this discovery is still crazy cool — the supervoid could be the newest candidate for the largest structure ever discovered in the universe. Suck it, Sloan Great Wall.

Read more about this new research published today in the Monthly Notices of the Royal Astronomical Society in my Discovery News blog.

The First Visual Evidence of Dark Energy?

A map of the faint microwave radiation left over after the big bang shows superclusters (red circles) and supervoids (blue circles). Credit: B. Granett, M. Neyrinck, I. Szapudi
A map of the faint microwave radiation left over after the big bang shows superclusters (red circles) and supervoids (blue circles). Credit: B. Granett, M. Neyrinck, I. Szapudi

A new cosmic map has been created by University of Hawaii astronomers showing the fingerprint of dark energy throughout the observable Universe. This is the first time such precise direct evidence of the mysterious force that is believed to be behind the continuing expansion of the Universe. By analysing microwave background radiation (the electromagnetic “echo” left over from the Big Bang), the Hawaii team have looked at the characteristics of the radiation as it passes through supervoids and superclusters. If the theory of dark energy is correct, this cosmic background radiation should cool when passing through superclusters and warm up when passing through supervoids. Analysing a huge amount of data from the Sloan Digital Sky Survey, the researchers have observed what the theory predicts and calculated that there is a 1 in 20,000 chance that their results are random. It therefore seems likely that the effect is caused by the presence of dark energy, giving us the best view yet of this strange energy that appears to permeate through the entire expanding Universe…
Continue reading “The First Visual Evidence of Dark Energy?”

New Exotic Particle May Explain Milky Way Gamma-Ray Phenomenon

Chandra observation of Cassiopeia A, a young supernova remnant in our galaxy - a prominent source of high-energy particles (NASA/CXC/MIT/UMass Amherst/M. D. Stage et al.)
Chandra observation of Cassiopeia A, a young supernova remnant in our galaxy - a prominant source of high-energy particles (NASA/CXC/MIT/UMass Amherst/M. D. Stage et al.)

There is something strange happening in the core of the Milky Way. A space observatory measuring the energy and distribution of gamma-rays in the cosmos has made an unexpected (and perplexing) discovery. It would seem there is a very high proportion of gamma-ray photons emanating from our galactic core with a very distinctive signature; they have a precise energy of 511 keV (8×10-14 Joules), and there’s a lot of them. So what could possibly be producing these 511 keV gamma-rays? It turns out, 511 keV is a magic number; it is the exact rest mass energy of a positron (the antimatter particle of the electron). So this is fairly conclusive evidence that positrons are dying (i.e. annihilating) in vast numbers in our galactic nuclei. Still, this is of little help to astrophysicists as there is no known mechanism for producing such high numbers of annihilating positrons. Ideas have been put forward, but there’s a new possibility, involving some new particle physics and some lateral thinking…
Continue reading “New Exotic Particle May Explain Milky Way Gamma-Ray Phenomenon”

The Case of the Supermassive Black Hole, the Infrared Object and Perceived Accuracy of Science

There is a trend in astronomical observations to label strange and exotic objects with superlative names. Take “supermassive” black holes for instance. Yes they are more massive than intermediate black holes, bigger than stellar black holes, and in a whole different league to theoretical micro-black holes. But is the label “supermassive” an accurate description? Is it even scientific?

After reading a very interesting article written by Michael Gmirkin on “Incorrect Assumptions in Astrophysics“, I began to relate his investigation into the use of terms to describe astronomical phenomena with very expressive names. Terms like “super-massive”, “ultra-luminous”, and “beyond-bright” are mentioned by Gmirkin, perhaps leading astronomers to incorrect conclusions. Whilst this may be perceived as an issue amongst scientists, what if the media or non-specialist individuals misinterpret the meaning of these grand statements? Could it lead to public misunderstanding of the science, possibly even causing worry when a scientist describes a particle accelerator collision as “recreating the conditions of the Big Bang”?
Continue reading “The Case of the Supermassive Black Hole, the Infrared Object and Perceived Accuracy of Science”

What Happens When Two Galaxies Collide?

A galactic collision between NGC 2207 and IC 2163 (HST)

So what does happen? Will the stars crash into one another, sending out huge emissions of gamma radiation and gravitational waves? The effects of two galaxies meeting and colliding are actually a little more elegant than that – for starters, it’s most likely that none of the stars will meet due to the huge distances between star systems. Also, the merging of the systems will spark a huge campaign of star creation within the newly formed fertile gas clouds. So what will we see long after the galaxies have ripped each other apart? Simulations show huge arcs of tidally-formed dust and stars, looking strangely like the precursors to the galactic ghosts recently observed
Continue reading “What Happens When Two Galaxies Collide?”