There’s Something Massive Buried Under the Moon’s Far Side

And it’s likely the massive metallic corpse of an ancient asteroid

This false-color graphic shows the topography of the far side of the Moon. The warmer colors indicate high topography and the bluer colors indicate low topography. The South Pole-Aitken (SPA) basin is shown by the shades of blue. The dashed circle shows the location of the mass anomaly under the basin. [NASA/Goddard Space Flight Center/University of Arizona]

It may be Earth’s only natural satellite and our closest alien world, but the Moon still hides a multitude of mysteries under its surface—including something massive embedded in its far side.

As detailed in a new study published in the journal Geophysical Research Letters, researchers led by Baylor University analyzed data from NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission that orbited above the lunar surface for a little under a year in 2012.

The two GRAIL spacecraft flew one in front of the other, precisely measuring the distance of their separation in order to detect very small fluctuations in the Moon’s gravitational field. When the spacecraft passed over a region of higher density, the local gravitational field would become enhanced, slightly accelerating the leading spacecraft (called “Ebb”) before the trailing spacecraft (“Flow”) experienced that acceleration. By mapping these acceleration fluctuations, scientist have gained an invaluable understanding of density fluctuations deep below the Moon’s surface that would have otherwise remained invisible.

During this recent analysis, the researchers discovered a gravitational “anomaly” beneath the South Pole-Aitken basin—a vast depression on the lunar far side spanning 2,000 miles wide and several miles deep. This anomaly represents a huge accumulation of mass hundreds of miles below the basin.

“Imagine taking a pile of metal five times larger than the Big Island of Hawaii and burying it underground. That’s roughly how much unexpected mass we detected,” said Peter B. James, of Baylor University and lead author of the study, in a statement.

How did all that material end up buried inside the Moon’s mantle? The South Pole-Aitken basin was created four billion years ago in the wake of a massive asteroid impact. In fact, the basin is known to be one of the biggest impact craters in the solar system. If this crater was formed by an impact, it stands to reason that the gravitational anomaly is being caused by the dense metallic remains of the massive asteroid that met its demise when the Earth-Moon system was in the throes of formation.

“When we combined [the GRAIL data] with lunar topography data from the Lunar Reconnaissance Orbiter, we discovered the unexpectedly large amount of mass hundreds of miles underneath the South Pole-Aitken basin,” added James. “One of the explanations of this extra mass is that the metal from the asteroid that formed this crater is still embedded in the Moon’s mantle.”

There may be other explanations, one of which focuses on the formation of the Moon itself. As the lunar interior cooled after formation, the large subsurface mass could be an accumulation of “dense oxides associated with the last stage of lunar magma ocean solidification,” the researchers note.

The metallic corpse of an ancient asteroid is the leading candidate, however, and computer simulations carried out by the team indicated that if the conditions are right, the dense iron-nickel core of an asteroid can be dispersed inside the Moon’s mantle where it remains embedded today without sinking into the lunar core.

Although there were certainly larger asteroid impacts throughout the history of our solar system, the Moon’s South Pole-Aitkin basin is the largest preserved impact crater known, making it a prime candidate to study ancient impact sites

“[It’s] one of the best natural laboratories for studying catastrophic impact events, an ancient process that shaped all of the rocky planets and moons we see today,” said James.

It just so happens that we currently have a mission at the basin, exploring this strange and unexplored place. On Jan. 3, the Chinese Chang’e 3 mission achieved the first soft touchdown on the lunar far side, landing inside Von Kármán crater and releasing a robotic rover, Yutu-2, to explore the landscape. At time of writing, the mission is ongoing.

Doomsday, Whenever: Massive Asteroid Impacts Probably Happen at Random

We always seem to be “overdue” a devastating asteroid impact, but how can we be overdue if asteroids don’t have an impact schedule?

asteroid-day-2015
Don Davis/NASA

Humans are naturally tuned to seek out patterns in seemingly random events. It’s an evolutionary trait that has helped us become the smart Homo sapiens we are today.

This ability to spot patterns and predict cyclical events continues to dominate our everyday lives. For example, geologists chart seismic activity in hopes of seeing a tell-tail earthquake signal before the “big one” happens; farmers track seasonal cycles in an attempt to predict periods of drought; Wall Street traders use complex numerical models to warn of the next financial crisis (or, indeed, profit from the downturn). Also, astronomers try to find patterns in cosmic occurrences that could pose an existential threat.

We are, of course, talking asteroid impacts — cataclysmic events that have shaped all of the planets in our solar system. Although Earth’s atmosphere is very good at eroding away ancient impact craters, evidence for asteroid impacts in the geological history of our planet is very common. Frankly, it’s perfectly natural to be hit by large asteroids and comets; that’s how planets accrete rocky material, collect water and accumulate organic chemistry for life (on Earth, at least).

But should we get hit by a massive asteroid in the near future, it could be curtains for our civilization. So it sure would be handy if we could somehow use the geologic record of our planet, see how often we get punched, spot a cycle or some kind of pattern, predict then the next impact is likely to happen and — hopefully — plan for the next marauding space rock to make an appearance in our skies! (Whether we’ll be able to do anything about it is an entirely different matter.)

Although seeking out cycles in asteroid and comet strikes is a doomsayer’s favorite hobby, scientists have had a challenging time at pinning down any kind of pattern in historic asteroid impacts and, as a new study published in the journal Monthly Notices of the Royal Astronomical Society dramatically concludes, there may be no pattern at all.

But what could drive periodic asteroid or comet impacts in the first place? One hypothesis claims that the solar system’s “wobble” through the galactic plane may destabilize comets in the Oort Cloud periodically, causing an uptick in massive planetary impacts. Also, the much hyped solar twin, Nemesis, could gravitationally jumble asteroids during its long orbit around the sun. But neither hypothesis stands up to scrutiny and the existence of an extremely dim solar partner is becoming increasingly unlikely.

Regardless, previous studies have suggested that extinction-level impacts (of the magnitude of the one that wiped out, or at least greatly contributed to the extinction of the dinosaurs) occur roughly every 26 million years (the cause of which is open to debate), but researchers from ETH Zurich and Lund University in Sweden now refute this claim.

“We have determined … that asteroids don’t hit the Earth at periodic intervals,” Matthias Meier, of ETH Zurich’s Institute of Geochemistry and Petrology, said in a statement.

After studying precisely-dated impact craters around the world that were formed in the past 500 million years, Meier and Sanna Holm-Alwmark of Lund University dated some 22 craters with dates of impacts known to a precision of one percent.

Then, using a technique known as circular spectral analysis (CSA), they attempted to find the approximate-26 million year period in this set of craters. They found no such period.

Interestingly, Meier and Holm-Alwmark also found that some of the impact craters were of the same age, hinting at a common source. “Some of these craters could have been formed by the collision of an asteroid accompanied by a moon,” said Meier. “But in other cases, the impact sites are too far away from each other for this to be the explanation.”

One interesting example is the apparent close similarity in age of the famous 66 million-year-old, 110 mile-wide Chicxulub Crater in Mexico (that has been linked with the extinction of the dinosaurs) and the 15 mile-wide Boltysh Crater in the Ukraine. As pointed out by the researchers, although a definitive explanation for this coincidence isn’t immediately clear, the two impactors may have originated from a collision in the asteroid belt, sending fragments to Earth, hitting the planet within a very short period of one another.

And it’s these kinds of clustering impacts that the researchers have identified as being potential problems with previous statistical studies — they assumed each impact is distinct, when in fact, they happened at the same time, possibly skewing results and creating a pattern when, in fact, there wasn’t one.

“Our work has shown that just a few of these so-called impact clusters are enough to suggest a semblance of periodicity,” said Meier.

I have little doubt that these new findings will be disputed, spawning more studies pointing to other statistical techniques and a bigger impact crater data set, but it is interesting to think that, as far as extinction-level impact events go, there really may be no pattern to their occurrence.

We know that a doomsday asteroid is out there, and it will hit us, but it has a random impact date that is only known to our planet’s geological future.