Sadly, ‘Oumuamua Isn’t Piloted by Joyriding Aliens

An international team of experts have teamed up to conclude that the interstellar visitor isn’t what we hoped it was.

An artist’s impression of the strangely-elongated interstellar object ‘Oumuamua that zoomed through our solar system in 2017 [ESO/M. Kornmesser]

It probably comes as no surprise that the scientific consensus of ‘Oumuamua’s origins have concluded that it is a natural object, despite how funky and alien spaceship-looking the interstellar visitor at first appeared. According to a new study published today in the journal Nature Astronomy, the findings of 14 international experts have been pooled to categorically say that ‘Oumuamua isn’t an artificial object piloted by an intelligent extraterrestrial species, but instead “has a purely natural origin.”

“The alien spacecraft hypothesis is a fun idea, but our analysis suggests there is a whole host of natural phenomena that could explain it,” said the team’s leader Matthew Knight, from the University of Maryland, in a statement.

This most recent study comes hot on the heels of a fair amount of speculation that the spinning cigar-shaped object, which was detected by the Pan-STARRS1 telescope in Hawaii on Oct. 19, 2017, could be artificial. One of the more vocal advocates of this possibility, Avi Loeb of Harvard University, investigated the idea that ‘Oumuamua may be an interstellar probe that used our sun’s radiation pressure for a boost in velocity as it flew through the inner solar system. While the world’s media loved this concept (as did I), many scientists balked and emphasized the need to take the Occam’s razor approach and instead focus on natural explanations, not aliens. But, as pointed out by Loeb, while more likely explanations existed, considering the most extreme ones is still a part of the scientific process.

“This is how science works,” said Loeb in an interview for The Harvard Gazette late last year. “We make a conjecture … and if someone else advances another explanation, we will compare notes and the next time we see an object of this type we will hopefully be able to tell the difference. That’s the process by which science makes progress.”

Deep down, we all had the sense that the interstellar visitor likely wasn’t aliens (though it did spawn some wonderful debates about mind-boggling interstellar distances, the challenges of visiting other star systems, and why ET would bother popping by for a whistle-stop tour without saying “hi”), but this new study convincingly sounds the death knell for the possibility of aliens taking a joyride through our galactic neighborhood.

The new study is clear, in which the researchers write: “Here we review our knowledge and find that in all cases, the observations are consistent with a purely natural origin for ‘Oumuamua.”

So, what does the study conclude?

The object is most likely an ancient interstellar comet that randomly encountered our solar system after drifting through interstellar space for millions of years. The mechanisms by which ‘Oumuamua was ejected from its star system of birth remains up for debate, but the study’s authors point to the likelihood of a Jupiter-like world that may have gravitationally ejected the object when it strayed too close, helping it achieve escape velocity and a future lost deep in the interstellar expanse—until it encountered our solar system.

Even the behavior of the ancient comet as it traveled through the inner solar system agrees with theoretical predictions. The small boost in velocity as it made close approach to our sun was caused by ices (entombed under ‘Oumuamua’s surface) being heated and vented into space as a vapor (and not aliens hitting the gas). This behavior in comets is well-known, but the problem with ‘Oumuamua is that it exhibited few signs of being a comet—it didn’t develop a tail nor did it develop a coma, two clues of its cometary nature. But this object is different from the comets we know; it has been drifting through the galaxy for eons, perhaps it lost the majority of its ice in previous stellar encounters, or perhaps it contained little in the way of volatiles during its formation. Comets and asteroids also have a lot more in common that the textbooks may tell us, so perhaps it did vent small quantities of vapor to give it a boost, but not enough for astronomers to observe a tail and coma. In short, ‘Oumuamua shares similar traits to other objects that exist in our solar system

“While ‘Oumuamua’s interstellar origin makes it unique, many of its other properties are perfectly consistent with objects in our own solar system,” added Robert Jedicke of the University of Hawai’i’s Institute for Astronomy (IfA) and collaborator in the Nature Astronomy study.

The key thing that makes ‘Oumuamua so captivating, however, is not how it behaved when it entered the solar system and used the sun to change its course, it’s that we know it came from interstellar space, the first of its kind that we’ve ever encountered. Undoubtedly, the solar system has been visited countless times by junk that has been shed by other stars in our galaxy—there’s a lot of stars carrying around a lot of comets and asteroids, after all, they’re probably scattered around the Milky Way like baby’s toys being thrown out of strollers—but this is the first, special interstellar visitor that we’ve only just had the ability to detect.

The best news? There will be more.

Humanity is rapidly advancing through a “golden age” for astronomy and, if these interstellar vagabonds are as common as we now believe, we’re on the verge of detecting many more of them. For example, the Large Synoptic Survey Telescope (LSST), which is being constructed in Chile, is expected to become operational in 2022 and it will be so powerful that astronomers predict at least one ‘Oumuamua-like object will be spotted per year. Once we grasp how often these things turn up, perhaps we’ll be prepared enough to have a robotic spacecraft intercept one to see what these visitors from other stars really look like instead of depending on distant observations.

Of course, this whole episode could be a cautionary tale. Perhaps our advanced alien neighbors disguise their spacecraft to look like passing comets to get a closer look of primitive intelligences such as ourselves.* ‘Oumuamua being identified as an interstellar comet is exactly what they want us to believe…

*This was inspired by a tweet I read this morning, but I forgot who tweeted it and it appears I didn’t “like” it, so it’s since been lost to the twitterverse. Thank you to whomever tweeted it, it formed the seed to this blog!

There’s Something Massive Buried Under the Moon’s Far Side

And it’s likely the massive metallic corpse of an ancient asteroid

This false-color graphic shows the topography of the far side of the Moon. The warmer colors indicate high topography and the bluer colors indicate low topography. The South Pole-Aitken (SPA) basin is shown by the shades of blue. The dashed circle shows the location of the mass anomaly under the basin. [NASA/Goddard Space Flight Center/University of Arizona]

It may be Earth’s only natural satellite and our closest alien world, but the Moon still hides a multitude of mysteries under its surface—including something massive embedded in its far side.

As detailed in a new study published in the journal Geophysical Research Letters, researchers led by Baylor University analyzed data from NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission that orbited above the lunar surface for a little under a year in 2012.

The two GRAIL spacecraft flew one in front of the other, precisely measuring the distance of their separation in order to detect very small fluctuations in the Moon’s gravitational field. When the spacecraft passed over a region of higher density, the local gravitational field would become enhanced, slightly accelerating the leading spacecraft (called “Ebb”) before the trailing spacecraft (“Flow”) experienced that acceleration. By mapping these acceleration fluctuations, scientist have gained an invaluable understanding of density fluctuations deep below the Moon’s surface that would have otherwise remained invisible.

During this recent analysis, the researchers discovered a gravitational “anomaly” beneath the South Pole-Aitken basin—a vast depression on the lunar far side spanning 2,000 miles wide and several miles deep. This anomaly represents a huge accumulation of mass hundreds of miles below the basin.

“Imagine taking a pile of metal five times larger than the Big Island of Hawaii and burying it underground. That’s roughly how much unexpected mass we detected,” said Peter B. James, of Baylor University and lead author of the study, in a statement.

How did all that material end up buried inside the Moon’s mantle? The South Pole-Aitken basin was created four billion years ago in the wake of a massive asteroid impact. In fact, the basin is known to be one of the biggest impact craters in the solar system. If this crater was formed by an impact, it stands to reason that the gravitational anomaly is being caused by the dense metallic remains of the massive asteroid that met its demise when the Earth-Moon system was in the throes of formation.

“When we combined [the GRAIL data] with lunar topography data from the Lunar Reconnaissance Orbiter, we discovered the unexpectedly large amount of mass hundreds of miles underneath the South Pole-Aitken basin,” added James. “One of the explanations of this extra mass is that the metal from the asteroid that formed this crater is still embedded in the Moon’s mantle.”

There may be other explanations, one of which focuses on the formation of the Moon itself. As the lunar interior cooled after formation, the large subsurface mass could be an accumulation of “dense oxides associated with the last stage of lunar magma ocean solidification,” the researchers note.

The metallic corpse of an ancient asteroid is the leading candidate, however, and computer simulations carried out by the team indicated that if the conditions are right, the dense iron-nickel core of an asteroid can be dispersed inside the Moon’s mantle where it remains embedded today without sinking into the lunar core.

Although there were certainly larger asteroid impacts throughout the history of our solar system, the Moon’s South Pole-Aitkin basin is the largest preserved impact crater known, making it a prime candidate to study ancient impact sites

“[It’s] one of the best natural laboratories for studying catastrophic impact events, an ancient process that shaped all of the rocky planets and moons we see today,” said James.

It just so happens that we currently have a mission at the basin, exploring this strange and unexplored place. On Jan. 3, the Chinese Chang’e 3 mission achieved the first soft touchdown on the lunar far side, landing inside Von Kármán crater and releasing a robotic rover, Yutu-2, to explore the landscape. At time of writing, the mission is ongoing.

If Aliens Pilot Interstellar Object ‘Oumuamua, They Snubbed Us

The Seti Institute has monitored the object for radio transmissions, just in case it isn’t natural

We humans are a sensitive bunch. We keep pondering the question: “are we alone?” If we consider the answer is a “yes,” we then start having an existential crisis over our place in the universe. But if the answer is a “no,” a can of worms open and we start asking even more questions. “If they’re out there, where are they?” “Isn’t it a bit weird we haven’t heard from our extraterrestrial neighbors?” “Are they just too far away for us to communicate?” and my personal favorite: “Have they consciously decided not to communicate with us because we’re considered not worth communicating with?!” The Fermi Paradox is certainly as paradoxical as they come.

Cue a random object that cruised through our solar system last year. The interstellar visitor zoomed right into our interplanetary neighborhood, used the Sun’s gravity for a cheeky course correction, and then slingshotted itself back out into deep space. The whole thing happened so quickly that astronomers only noticed when the thing was speeding away from us at high speed.

Naturally, we took a hint from science fiction, remembering Arthur C. Clarke’s classic novel “Rendezvous With Rama” — when a huge artificial object appears from interstellar space and a brave team of astronauts are sent to intercept it. Might this interstellar object also be artificial? After all, it has an odd, tumbling shape (like a spinning cigar) and the precision at which it flew past us with the trajectory it did (using the Sun to change its direction and speed of travel) just feels artificial.

So, with the help of the SETI Institute’s Allen Telescope Array (ATA) in California, astronomers decided to take aim at the departing object from 
Nov. 23 and Dec. 5, 2017, when it was 170 million miles from Earth. The objective was to listen out for artificial radio transmissions that might reveal any kind of extraterrestrial intelligence. By monitoring frequencies from 1 to 10 GHz (at 100 MHz intervals), the ATA would be able to detect a very low powered onmidirectional transmitter, with a transmitting power as low as 10 Watts — the approximate equivalent to a citizen band radio.

According to the SETI study to be published in the February 2019 issue of Acta Astronautica, no signals were detected. Though this is obviously a blow for working out whether this thing was being actively piloted by some kind of intelligence, it does narrow down the true nature of the object, that has since been named ‘Oumuamua — which, in Hawaiian, roughly means “scout,” or “messenger.”

“We were looking for a signal that would prove that this object incorporates some technology — that it was of artificial origin,” said Gerry Harp, lead author of the study, in a SETI Institute statement. “We didn’t find any such emissions, despite a quite sensitive search. While our observations don’t conclusively rule out a non-natural origin for ‘Oumuamua, they constitute important data in assessing its likely makeup.”

Although this doesn’t prove ‘Oumuamua isn’t an alien spacecraft, it does put limits on the frequencies it could be transmitting on, if it is transmitting. And even if it isn’t transmitting, it doesn’t mean it’s not artificial. Could it be an ancient spacecraft that’s been sailing the interstellar seas for millions or billions of years, long after its intelligent occupants have died? Or long after its artificial intelligence has run out of energy? 

Or — and this is the big one — did it zoom through our solar system, aware of our presence, and not bother communicating with us? If that scenario played out, we need to re-open that can o’ worms and try to understand where we stand in the universal ecosystem of competing intelligences. Perhaps we are the cosmic equivalent of an ant colony; our intelligence just isn’t worth the time when compared with the unimaginable alien intelligences that have the technology to send ‘Oumuamuas to probe distant star systems for life.

Alas, it’s probably a case of Occam’s razor, where the simplest explanation is most likely the correct one: ‘Oumuamua is probably a strange-looking asteroid or ancient comet that was randomly shot at us by some distant star system and astronomers were lucky to detect it. But, we still need to ponder the least likely explanations, you just never know…

Meanwhile, Curiosity Has Found Something Shiny On Mars

My precious…


This image was taken by Curiosity’s ChemCam: Remote Micro-Imager (CHEMCAM_RMI) on Sol 2242 (Nov. 26) [NASA/JPL-Caltech/LANL]

It’s always fun to browse through the raw image archive for any Mars mission. You see rocks, dust, more rocks and more dust, but then you see something strange, sitting atop the dirt that is like nothing you’ve seen before.

Once, there was a piece of plastic on the ground in front of Curiosity. Plastic! Not alien plastic though, it was likely something that fell off the rover. Mars rover Opportunity even found strange “blueberries” scattered over Meridiani Planum that turned out to be spherical hematite inclusions, basically little balls of mineral that were formed via water action in Mars’ ancient past.

Now there’s a shiny rock just sitting there, in front of Curiosity. 

Mars isn’t known for its shiny objects. Everything is a ruddy color (because of the iron-oxide-laced dust that covers everything) and dull. So, when mission controllers saw this small shiny object, it became a focus of interest. They’ve even named it “Little Colonsay.” Don’t get too excited for an explanation that’s too outlandish, but it will be an interesting find if it turns out to be what scientists think it is.

“The planning team thinks it might be a meteorite because it is so shiny,” writes Susanne Schwenzer, Curiosity mission team member.

Meteorites have been discovered on Mars before by the Mars rovers — and Curiosity is no stranger to finding space rocks strewn on the ground — though it would still be a rare find by Curiosity if it does turn out to be a (likely) metallic chunk of space rock. As pointed out by Schwenzer, the team intend to carry out further analysis of the sample, as well as some other interesting rocks, with Curiosity’s ChemCam instrument to decipher what it’s made of.

So as we welcome the InSight mission to the Red Planet to begin its unprecedented study of Mars’ interior, always remember there’s still plenty of gems sitting on the surface waiting to be found.

Did a Solar Storm Detonate Dozens of Vietnam War Mines?

Some 25 underwater mines mysteriously exploded in the summer of 1972. A newly declassified report points its finger at a surprising culprit: the sun.

[NASA/SDO]

Something very strange happened on Aug. 4, 1972 in the waters near Vietnam. Dozens of undersea mines detonated for seemingly no reason. The matter was classified, as was a report trying to get to the bottom of what happened. Initial hypotheses focused on a malfunctioning self-destruct feature meant to prevent lost mines from posing an underwater hazard for decades after hostilities were over, but there was no corroborating evidence. Soviet subs might have accounted for one or two, but not systematic detonations across the whole minefield, not to mention their defensive countermeasures.

But one of the suggestions seemed to very neatly explain the observed phenomenon. The mines were magnetic, meaning that they reacted to the natural magnetism of metals in ships’ hulls and the changes in the strengths of their magnetic fields as those ships approached. It was an old, reliable technology and it would’ve taken a massive magnetic event to have set them off. And wouldn’t you know it, some of the most intense solar activity on record happened in that exact time frame, causing numerous power surges and telegraph outages across North America.

On the day Navy aircraft saw the mines go off, the sun erupted in what’s known as an X-class flare, a burst of energy more than 10,000 times more powerful than the high end of typical solar emissions. With the path to Earth cleared by supercharged solar winds, the resulting coronal mass ejection hit Earth in just 14.6 hours instead of the typical three days and caused massive magnetic and electrical disruptions in the atmosphere, quite possibly powerful enough to set off detectors on the underwater mines off the coast of Hon La Port as the plasma slammed into our planet.

So, case closed? Not exactly. We measure the intensity of the disruption in the Earth’s magnetic field caused by solar storms in negative nTs, or nano-Teslas. By itself, a nano-Tesla isn’t much. Your run of the mill fridge magnet is a million times stronger, although it’s only spread over tens of square centimeters, instead of millions of square kilometers like the fraction of a coronal mass ejection that hits Earth and lingers in the upper layers of the atmosphere. In 2003, a massive flare hit us with a magnetic disruption measuring almost -400 nT without melting anything down, although it did cause problems with air traffic.

By comparison, the ejection in 1972 measured a third of that at just -125 nT. Was it really strong enough to set off underwater mines? We’ll probably never know for sure, but it’s still entirely possible. Over the decades, we’ve learned much more about solar storms and what they can do, developed better shielding and early warning systems, more sophisticated equipment, and unwittingly created a shield of radio emissions to reroute charged particles from Earth. It’s quite plausible that older, less insulated technology was more sensitive to major solar storms and the trigger mechanisms for those mines were just one example.

[This article originally appeared on World of Weird Things]

Rolling Stones May Have Given Phobos its Enigmatic Grooves


The impact crater Stickney (and the smaller crater Limtoc) as imaged by NASA’s Mars Reconnaissance Orbiter in 2008 [NASA/JPL-Caltech]

Earth has them. So does the Moon. As does Mars. And now we know dwarf planet Ceres has them, too. Could a Martian moon also have them? Well, according to new research, they could explain the mystery behind Phobos’ strange lines that are carved into its dusty surface.

What am I talking about? Boulders. Specifically boulders that have been on the move. Boulders that — in the presence of a gravitational field, no matter how weak — roll and bounce, leaving their grooves on some of our most beloved celestial bodies.

“These grooves are a distinctive feature of Phobos, and how they formed has been debated by planetary scientists for 40 years,” said planetary scientist Ken Ramsley (Brown University) who led the work, in a statement. “We think this study is another step toward zeroing in on an explanation.”

Ever since NASA’s Mariner and Viking missions spied Phobos’ lines in the 1970’s, scientists have debated what could have created them. The ancient natural satellite of Mars is only 27 kilometers wide and possesses long, etched lines that, in some cases, loop around the entirety of the moon’s circumference.

A popular hypothesis for these lines focused on the possibility that Phobos is a dying moon; the tidal forces from Mars ultimately pulling the body apart. In this scenario, the lines are a sign that the moon’s interior is crumbling, creating fault lines in the surface that our space robots have been able to image. Another idea is that the lines were created by crater chains; multiple impacts by smaller rocks that etched out long lines around Phobos’ surface.

However, according Ramsley’s study, which is published in the journal Planetary and Space Science, the real mechanism that created Phobos’ stripes is far more elegant, and more familiar to us Earthlings. What’s more, it was one of the original hypotheses that was posited when the lines were discovered over 40 years ago.

In 1998, NASA’s Mars Global Surveyor imaged Phobos’ stripes [NASA/JPL-Caltech/LLNL]

You see, Phobos has a huge, nine-kilometer-wide crater on one side, called Stickney (named after Angeline Stickney who motivated the search for Mars’ natural satellites in the late 19th Century), that was excavated by a massive impact in the moon’s ancient past. Using computer models, the researchers simulated what would happen post-impact and where the excavated material (including some hefty boulders) would have ended up. Although a huge quantity of material would have been lost to space during the Stickney impact, a few large rocks may have been kicked across the moon’s surface — these boulders would have rolled slowly, slow enough to be held in contact with Phobos, but fast enough, in some cases, to make more than one trip around the moon. 

But many of these lines intersect one another and don’t appear to be radially blasted from the crater. Also, there are regions on the surface where the lines entirely disappear. Ramsley’s simulation explains these oddities.

The simulations show that because of Phobos’ small size and relatively weak gravity, Stickney stones just keep on rolling, rather than stopping after a kilometer or so like they might on a larger body. In fact, some boulders would have rolled and bounded their way all the way around the tiny moon. That circumnavigation could explain why some grooves aren’t radially aligned to the crater. Boulders that start out rolling across the eastern hemisphere of Phobos produce grooves that appear to be misaligned from the crater when they reach the western hemisphere.

Brown University

This also helps to explain why many of these lines cross and superimpose themselves on one another: Grooves that were laid down by boulders rolling immediately after the impact were crossed by boulders that completed a complete traverse of the globe of the moon, some ending up where they started, minutes or hours later. This also explains why Stickney itself has grooves inside its crater basin.

The dark surface of Phobos with Mars as the backdrop, as seen by the European Mars Express [ESA]

But there’s a blank area on Phobos that appears to contain no grooves, a phenomenon that the simulation also addresses. This region is located at a comparatively low elevation part of Phobos, surrounded by a higher-elevation lip. “It’s like a ski jump,” said Ramsley. “The boulders keep going but suddenly there’s no ground under them. They end up doing this suborbital flight over this zone.

“We think this makes a pretty strong case that it was this rolling boulder model accounts for most if not all the grooves on Phobos.”

As a fan of rolling boulders on other worlds, I particularly enjoy imagining the lumbering slow roll of these massive rocks that circumnavigated Phobos. They had to keep their roll slow so not to achieve escape velocity, but fast enough to leave their indelible marks for humans to ponder their origins.

Black Hole’s Personality Not as Magnetic as Expected

V404Cyg_XRT_halo_fullsize
This 2015 NASA Swift observation of V404 Cygni shows the X-ray echoes bouncing off rings of dust surrounding the binary system after the X-ray nova (Andrew Beardmore/Univ. of Leicester/NASA/Swift)

In 2015, a stellar-mass black hole in a binary star system underwent an accretion event causing it to erupt brightly across the electromagnetic spectrum. Slurping down the plasma from its stellar partner — an unfortunate sun-like star — the eruption became a valuable observation for astronomers and, in a recent study, researchers have used the event to better understand the magnetic environment surrounding the black hole.

The binary system in question is V404 Cygni, located 7,795 light-years from Earth, and that 2015 outburst was an X-ray nova, an eruption that previously occurred in 1989. Detected by NASA’s Swift space observatory and the Japanese Monitor of All-sky X-ray Image (MAXI) on board the International Space Station, the event quickly dimmed, a sign that the black hole had consumed its stellar meal.

Combining these X-ray data with observations by radio, infrared and optical telescopes, an international team of astronomers were able to measure emissions from the plasma close to the black hole’s event horizon as it cooled.

The black hole was formed after a massive star ran out of fuel and exploded as a supernova. Much of the magnetism of the progenitor star would have been retained post-supernova, so by measuring the emissions from the highly charged plasma, astronomers have a tool to probe deep inside the black hole’s “corona.” Like the sun’s corona — which is a magnetically-dominated region where solar plasma interacts with our star’s magnetic field (producing the solar wind and solar flares, for example) — it’s predicted that there should be a powerful interplay between the accreting plasma and the black hole’s coronal magnetism.

As charged particles interact magnetic fields, they experience acceleration radially (i.e. they spin around the magnetic field lines that guide their direction of propagation) and, should the magnetism be extreme (in a solar or, indeed, black hole’s corona), this plasma can be accelerated to relativistic speeds. In this case, synchrotron radiation may be generated. By measuring the radiation across all wavelengths, astronomers can thereby probe the magnetic environment close to a black hole as this radiation is directly related to how powerful a magnetic field is generating it.

black-hole
A black hole with a magnetic field threading through an accretion disk (ESO)

According to the study, published in the journal Science on Dec. 8, V404 Cygni’s hungry black hole has a much weaker magnetic field than theory would suggest. And that’s a bit of a problem.

The researchers write: “Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems.”

Black holes are poorly understood, but with the advent of gravitational wave (and “multimessenger”) astronomy and the excitement surrounding the Event Horizon Telescope, in the next few years we’re going to get a lot more intimate with these gravitational enigmas. Why this particular black hole’s magnetic environment is weaker than what would be expected, however, suggests that our theories surrounding black hole evolution are incomplete, so there will likely be some surprises in store.

“We need to understand black holes in general,” said collaborator Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), in a statement. “If we go back to the very earliest point in our universe, just after the Big Bang, there seems to have always been a strong correlation between black holes and galaxies. It seems that the birth and evolution of black holes and galaxies, our cosmic island, are intimately linked. Our results are surprising and one that we’re still trying to puzzle out.”

Alien vs. Comet: Is the SETI “Wow!” Signal Dead? (Astroengine Video)

There’s a new hypothesis about what happened on August 15, 1977, and, sadly, it doesn’t involve aliens — just a photobombing comet. I was surprised about the controversy surrounding Antonio Paris’ research into the possibility of comets generating radio signals at 1420MHz and mimicking the famous “Wow!” signal nearly 40 years ago, so I decided to record Astroengine’s second YouTube video on the topic. Enjoy! And remember to subscribe and like, there’s a lot more to come!

SETI “Wow!” Signal Wasn’t Chatty Aliens After All — It Was a Fizzing Comet

sk-2017_04_article_main_desktop (1)
Big Ear Radio Observatory

On Aug. 15, 1977 at 10:16 p.m. ET Ohio State University’s Big Ear radio telescope detected a curious signal from deep space. Nearly 40 years later, we finally know what caused it and, sadly, it’s not aliens.

For decades, the signal has been the strongest piece of “go-to” evidence that intelligent extraterrestrials are out there in our galaxy. When found by astronomer Jerry Ehman on that fateful night, the 72-second signal — that had been recorded on a computer printout — certainly stood out.

While pointing at three star systems called Chi Sagittarii in the constellation of Sagittarius, Big Ear had picked up a powerful burst of radio waves. To the untrained eye, the assortment of printed digits might not mean much, but as I wrote in 2016, those letters and numbers could hold the answer to the biggest question we’re currently asking of the universe: Are we alone?

The Big Ear printout contains a bunch of apparently random numbers and letters, but Ehman’s red pen circles a cluster of digits “6EQUJ5” with other circles around a “6” and “7” on separate columns. This particular code first uses the numbers 1-9 and then the alphabet A-Z to denote signal strength. As the burst suggests, the signal strength hit “6” and then blasted through the letters reaching a peak of “U” before subsiding back into the numerical scale at “5.” There was then a slight wave trailing the main signal (hence the circled “6″ and “7″). The wave profile of the “Wow!” signal is graphically envisaged here. (Discovery News, April 18, 2016)

Wow-signal-graphic-1
Maksim Rossomakhin

The maddening thing about the Wow! signal has always been a lack of replication. To science, one random signal in the dark proves nothing. It would be like trying to plot a trend line on a graph with one data point. More data is obviously needed and yet, since 1977, there’s been no other radio signal quite like it.

Curious, yes. Definite proof of chatty aliens? A solid nope.

So, when researching other possible causes of the Wow! signal that were also rare occurrences (but not aliens), Antonio Paris of St Petersburg College, Fla. (and an ex-analyst of the US Department of Defense), suggested that the signal might have been generated by one of two comets that serendipitously drifted into the line of sight of the Big Ear radio telescope.

In 1977, neither 266P/Christensen and 335P/Gibbs were known of (they were discovered in 2006 and 2008 respectively) and Paris calculated that both comets would have been in the right place in the sky when the Wow! signal was recorded.

What’s more, the Wow! signal has a frequency of 1420MHz — the same frequency that neutral hydrogen radiates at. Hydrogen is abundant in our universe, so this frequency is commonly observed in astronomy.

At first blush, observing in this frequency to look for alien transmissions might seem like a fool’s errand; if the universe is humming in hydrogen noise, why would aliens bother using that frequency to ping their extraterrestrial neighbors?

Through SETI logic, the frequency of neutral hydrogen might be used by advanced civilizations as a kind of interstellar water cooler. It is the most abundant signal in the universe, every intelligent life-form would know this. So why not use 1420MHz as THE frequency to communicate across the light-years in hopes that other civilizations might already be tuned in?

But a SETI signal would need to stand out from the crowd — it would need to be powerful and possess other qualities that hint at its artificial nature. But should a comet quickly pass through the observing window of a radio telescope, Paris predicted that the received 1420MHz signal might mimic that of an artificial source.

And this year, an opportunity presented itself. Comet 266P/Christensen would pass through the sky in a similar orbital position as it did in 1977. During an observing campaign from November 2016 to February 2017, Paris studied the radio frequencies coming from the region and from the comet itself. He also compared these observations with other known comets.

The upshot: 266P is indeed producing a strong 1420MHz signal, as are other comets.

“The results of this investigation, therefore, conclude that cometary spectra are detectable at 1420 MHz and, more importantly, that the 1977 “Wow!” Signal was a natural phenomenon from a solar system body,” he writes in a study published in the Journal of the Washington Academy of Sciences

It appears that, in this case, the signal wasn’t aliens trying to make contact with us; it was a chance comet that just happened to be in the right place at the right time.

So, back to that alien megastructure

kotm-xfiles-poster-full
Fox

The ‘Alien Megastructure’ Star Is Doing Weird Things Again

sk-2017_04_article_main_desktop
NASA (edit by Ian O’Neill)

In our quest to understand what the heck is going on with Tabby’s Star, astronomers have been given a cosmic gift — a dimming event is happening right now and they’re collecting data in real time.

Early Friday morning, the star — officially designated KIC 8462852 — dipped in brightness inextricably and bulletins started to fly around the internet. Astronomers involved in the original discovery took to Twitter to announce the awesomeness and rally the world’s observatories to point their telescopes at the action 1,300 light-years away:

But why all the excitement? Well, this is the same star that, last year, hogged the headlines with speculation that a super advanced alien civilization was building some kind of “megastructure” around the star. (You can read my article on it here.) But why would the world’s media, let alone professional scientists, be okay with even hinting at the “alien” thing?

Well, as part of the Planet Hunters project, Tabby’s Star is wonderfully weird. After analyzing observations from NASA’s exoplanet-hunting Kepler Space Telescope, the citizen scientists noticed something peculiar.

Usually, Kepler’s ultra-sensitive optics detect the slight dimming of stars when any planets in orbit drift in front — an event known as a “transit.” These transits are typically very slight, but the signals detected at KIC 8462852 were mind-boggling. Between 2011 and 2013, Tabby’s Star exhibited a series of dips, dimming the brightness of the star by over 20 percent. Tabby’s Star was so-named after astronomer Tabetha Boyajian who led this research. Further studies of the star has also revealed a longer period of dimming.

And on Friday morning, it started happening again.

“At about 4 a.m. this morning, I got a phone call from Tabby [Boyajian] saying that Fairborn [Observatory] in Arizona had confirmed that the star was 3 percent dimmer than it normally is and that is enough that we are absolutely confident that this is no statistical fluke,” said Jason Wright, an associate professor of astronomy at Pennsylvania State University, during a live webcast. “We’ve now got it confirmed at multiple observatories I think.”

Now that astronomers are able to observe the star while the dimming is happening live (rather than studying past observations, which as been the case up until now), spectra of the star can be recorded and compared to previous data. This spectral information might reveal what material is causing the weird transit signals, potentially ruling some hypotheses out. But it might also create new questions.

Many hypotheses have been put forward for these unprecedented events before Friday. The most popular natural explanation has been the possibility that a giant “swarm” of comets drifted between the star and us, blocking the starlight. But this explanation falls short and doesn’t really explain why the brightness dips are so dramatic.

The most popular unnatural explanation is — you guessed italiens and astronomers are having a really hard job disproving this hypothesis. This idea is based around the possibility that a super advanced alien civilization (that’s well on its way to becoming a type II Kardashev civilization) is building a star-spanning solar array, akin to a Dyson swarm. In this scenario, the dimming in brightness would be caused by vast solar arrays blocking the light from view.

Now that the dimming is happening again, it will be interesting to see how the megastructure idea evolves.

Although imagining super-advanced aliens building stuff around a nearby star is fun, this episode so early in our hunt for extrasolar worlds is giving us a glimpse of just how strange our galaxy can be. In all likelihood, it probably isn’t an alien megastructure and more likely something astronomers have completely overlooked. But it could also be that these Kepler data are being caused by a natural stellar phenomenon that we’ve never seen before — a possibility that could be revealed very soon.