Exoplanet Count Tops 700

An artist's impression of a lone exoplanet transiting its parent star. There are now 700 confirmed alien worlds orbiting other stars (ESO)
An artist's impression of a lone exoplanet transiting its parent star. There are now 700 confirmed alien worlds orbiting other stars (ESO)

On Friday, the Extrasolar Planets Encyclopedia registered more than 700 confirmed exoplanets. Although this is an amazing milestone, it won’t be long until the “first thousand” are confirmed.

There are now more than 700 confirmed exoplanets in the database. The latest addition is the planet HD 100655 b.
— announced via the Exoplanet iPhone app

Only two months ago, the encyclopedia — administered by astrobiologist Jean Schneider of the Paris-Meudon Observatory — registered 600 confirmed alien worlds. Since then, there has been a slew of announcements including the addition of a batch of 50 exoplanets by the European Southern Observatory’s (ESO) High Accuracy Radial velocity Planet Searcher (or HARPS) in September.

The first exoplanet was discovered orbiting a Main Sequence star in 1995, and the rate of exoplanet detections has been accelerating ever since.

It is worth noting that hundreds more candidate exoplanet detections have been made, many of which have been spotted by NASA’s Kepler space telescope. Kepler is staring at the same patch of sky, waiting for alien worlds to cross the line of sight between their parent star and Earth, registering a slight dip in starlight brightness. The 1,235 candidates will be confirmed (or denied) as Kepler awaits future transits.

Detecting the slight dimming of starlight isn’t the only tool exoplanet hunters have to spot these alien worlds. The “radial velocity” method — as employed by systems such as the ESO’s HARPS — can detect the slight “wobble” of stars as orbiting worlds gravitationally “tug” on their parent stars. Both methods have their advantages and both are notching up an impressive exoplanet count. “Microlensing” has also been employed to spot a handful of exoplanets, as has direct imaging.

Exoplanetary studies are amongst the most exciting astronomical projects out there. Not only are we realizing there is a veritable zoo of worlds — some Earth-sized, others many times the mass of Jupiter — we are also pondering the most profound question: could extraterrestrial life inhabit these worlds?

For now, we have no clue, but life as we know it has a habit of springing up where we least expect it, it’s only a matter of time before we start to have some clue as to the existence of life as we don’t know it.

Screaming Exoplanets: Detecting Alien Magnetospheres

Exoplanets may reveal their location through radio emissions (NASA)
Exoplanets may reveal their location through radio emissions (NASA)

In 2009, I wrote about a fascinating idea: in the hunt for “Earth-like” exoplanets, perhaps we could detect the radio emissions from a distant world possessing a magnetosphere. This basically builds on the premise that planets in the solar system, including Earth, generate electromagnetic waves as space plasma interacts with their magnetospheres. In short, with the right equipment, could we “hear” the aurorae on extra-solar planets?

In the research I reviewed, the US Naval Research Laboratory scientist concluded that he believed it was possible, but the radio telescopes we have in operation aren’t sensitive enough to detect the crackle of distant aurorae. According to a new study presented at the RAS National Astronomy Meeting in Llandudno, Wales, on Monday, this feat may soon become a reality, not for “Earth-like” worlds but for “Jupiter-like” worlds.

“This is the first study to predict the radio emissions by exoplanetary systems similar to those we find at Jupiter or Saturn,” said Jonathan Nichols of the University of Leicester. “At both planets, we see radio waves associated with auroras generated by interactions with ionised gas escaping from the volcanic moons, Io and Enceladus. Our study shows that we could detect emissions from radio auroras from Jupiter-like systems orbiting at distances as far out as Pluto.”

Rather than looking for the magnetospheres of Earth-like worlds — thereby finding exoplanets that have a protective magnetosphere that could nurture alien life — Nichols is focusing on larger, Jupiter-like worlds that orbit their host stars from a distance. This is basically another tool in the exoplanet-hunters’ toolbox.

Over 500 exoplanets have been confirmed to exist around other stars, and another 1,200 plus exoplanetary candidates have been cataloged by the Kepler Space Telescope. The majority of the confirmed exoplanets were spotted using the “transit method” (when the exoplanet passes in front of its host star, thereby dimming its light for astronomers to detect) and the “wobble method” (when the exoplanet gravitationally tugs on its parent star, creating a very slight shift in the star’s position for astronomers to detect), but only exoplanets with short orbital periods have been spotted so far.

The more distant the exoplanet from its host star, the longer its orbital period. To get a positive detection, it’s easy to spot an exoplanet with an orbital period of days, weeks, months, or a couple of years, but what of the exoplanets with orbits similar to Jupiter (12 years), Saturn (30 years) or even Pluto (248 years!)? If we are looking for exoplanets with extreme orbits like Pluto’s, it would be several generations-worth of observations before we’d even get a hint that a world lives there.

“Jupiter and Saturn take 12 and 30 years respectively to orbit the Sun, so you would have to be incredibly lucky or look for a very long time to spot them by a transit or a wobble,” said Nichols.

By assessing how the radio emissions for a Jupiter-like exoplanet respond to its rotation rate, the quantity of material falling into the gas giant from an orbiting moon (akin Enceladus’ plumes of water ice and dust being channeled onto the gas giant) and the exoplanet’s orbital distance, Nichols has been able to identify the characteristics of a possible target star. The hypothetical, “aurora-active” exoplanet would be located between 1 to 50 AU from an ultraviolet-bright star and it would need to have a fast spin for the resulting magnetospheric activity to be detectable at a distance of 150 light-years from Earth.

What’s more, the brand new LOw Frequency ARray (LOFAR) radio telescope should be sensitive enough to detect aurorae on Jupiter-like exoplanets, even though the exoplanets themselves are invisible to other detection methods. Nice.

As we’re talking about exoplanets, magnetospheres and listening for radio signals, let’s throw in some alien-hunting for good measure: “In our Solar System, we have a stable system with outer gas giants and inner terrestrial planets, like Earth, where life has been able to evolve. Being able to detect Jupiter-like planets may help us find planetary systems like our own, with other planets that are capable of supporting life,” Nichols added.

Although Nichols isn’t talking about directly detecting habitable alien worlds (just that the detection of Jupiter-like exoplanets could reveal Solar System-like star systems), I think back to the 2009 research that discusses the direct detection of habitable worlds using this method: Aliens, if you’re out there, you can be as quiet as you like (to avoid predators), but the screaming radio emissions from your habitable planet’s magnetosphere will give away your location…