Two Exoplanets Are Whipping-Up a Pretty Protoplanetary Gas Spiral

alma-spirals
ALMA (ESO/NAOJ/NRAO)/Tang et al.

Using the awesome power of the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, astronomers have probed the protoplanetary disk of a young star system — with a twist.

ALMA is no stranger to protoplanetary disks; the array of 66 radio antennae in the Atacama desert is extremely sensitive to the emissions from the gas and dust surrounding stars. But this observation has revealed something more — there are two obvious dusty rings (orange) that are being sculpted by the presence of massive worlds, but between them (in blue) is a spiral gas structure. If there’s one thing I love it’s space spirals!

When comparing these observations with theoretical modeling of the system — called AB Aurigae, located about 470 light-years away — for that gas spiral to exist, there must be some interplanetary interplay between two exoplanets orbiting the star at 30 and 80 AU (astronomical units, where 1 AU is the average distance that Earth orbits the sun). The spiral is following the direction of rotation of the disk.

Besides looking really pretty, studies of these spiral structures help astronomers identify the presence of exoplanets and build a better understanding of the nature of protoplanetary disks.

Advertisements

Screaming Exoplanets: Detecting Alien Magnetospheres

Exoplanets may reveal their location through radio emissions (NASA)
Exoplanets may reveal their location through radio emissions (NASA)

In 2009, I wrote about a fascinating idea: in the hunt for “Earth-like” exoplanets, perhaps we could detect the radio emissions from a distant world possessing a magnetosphere. This basically builds on the premise that planets in the solar system, including Earth, generate electromagnetic waves as space plasma interacts with their magnetospheres. In short, with the right equipment, could we “hear” the aurorae on extra-solar planets?

In the research I reviewed, the US Naval Research Laboratory scientist concluded that he believed it was possible, but the radio telescopes we have in operation aren’t sensitive enough to detect the crackle of distant aurorae. According to a new study presented at the RAS National Astronomy Meeting in Llandudno, Wales, on Monday, this feat may soon become a reality, not for “Earth-like” worlds but for “Jupiter-like” worlds.

“This is the first study to predict the radio emissions by exoplanetary systems similar to those we find at Jupiter or Saturn,” said Jonathan Nichols of the University of Leicester. “At both planets, we see radio waves associated with auroras generated by interactions with ionised gas escaping from the volcanic moons, Io and Enceladus. Our study shows that we could detect emissions from radio auroras from Jupiter-like systems orbiting at distances as far out as Pluto.”

Rather than looking for the magnetospheres of Earth-like worlds — thereby finding exoplanets that have a protective magnetosphere that could nurture alien life — Nichols is focusing on larger, Jupiter-like worlds that orbit their host stars from a distance. This is basically another tool in the exoplanet-hunters’ toolbox.

Over 500 exoplanets have been confirmed to exist around other stars, and another 1,200 plus exoplanetary candidates have been cataloged by the Kepler Space Telescope. The majority of the confirmed exoplanets were spotted using the “transit method” (when the exoplanet passes in front of its host star, thereby dimming its light for astronomers to detect) and the “wobble method” (when the exoplanet gravitationally tugs on its parent star, creating a very slight shift in the star’s position for astronomers to detect), but only exoplanets with short orbital periods have been spotted so far.

The more distant the exoplanet from its host star, the longer its orbital period. To get a positive detection, it’s easy to spot an exoplanet with an orbital period of days, weeks, months, or a couple of years, but what of the exoplanets with orbits similar to Jupiter (12 years), Saturn (30 years) or even Pluto (248 years!)? If we are looking for exoplanets with extreme orbits like Pluto’s, it would be several generations-worth of observations before we’d even get a hint that a world lives there.

“Jupiter and Saturn take 12 and 30 years respectively to orbit the Sun, so you would have to be incredibly lucky or look for a very long time to spot them by a transit or a wobble,” said Nichols.

By assessing how the radio emissions for a Jupiter-like exoplanet respond to its rotation rate, the quantity of material falling into the gas giant from an orbiting moon (akin Enceladus’ plumes of water ice and dust being channeled onto the gas giant) and the exoplanet’s orbital distance, Nichols has been able to identify the characteristics of a possible target star. The hypothetical, “aurora-active” exoplanet would be located between 1 to 50 AU from an ultraviolet-bright star and it would need to have a fast spin for the resulting magnetospheric activity to be detectable at a distance of 150 light-years from Earth.

What’s more, the brand new LOw Frequency ARray (LOFAR) radio telescope should be sensitive enough to detect aurorae on Jupiter-like exoplanets, even though the exoplanets themselves are invisible to other detection methods. Nice.

As we’re talking about exoplanets, magnetospheres and listening for radio signals, let’s throw in some alien-hunting for good measure: “In our Solar System, we have a stable system with outer gas giants and inner terrestrial planets, like Earth, where life has been able to evolve. Being able to detect Jupiter-like planets may help us find planetary systems like our own, with other planets that are capable of supporting life,” Nichols added.

Although Nichols isn’t talking about directly detecting habitable alien worlds (just that the detection of Jupiter-like exoplanets could reveal Solar System-like star systems), I think back to the 2009 research that discusses the direct detection of habitable worlds using this method: Aliens, if you’re out there, you can be as quiet as you like (to avoid predators), but the screaming radio emissions from your habitable planet’s magnetosphere will give away your location…

Unexpectedly Large Black Holes and Dark Matter

The M87 black hole blasts relativistic plumes of gas 5000 ly from the centre of the galaxy (NASA)
The M87 black hole blasts relativistic plumes of gas 5000 ly from the centre of the galaxy (NASA)

I just spent 5 minutes trying to think up a title to this post. I knew what I wanted to say, but the subject is so “out there” I’m not sure if any title would be adequate. As it turns out, the title doesn’t really matter, so I opted for something more descriptive…

So what’s this about? Astronomers think they will be able to “see” a supermassive black hole in a galaxy 55 million light years away? Surely that isn’t possible. Actually, it might be.

When Very Long Baseline Interferometry is King

Back in June, I reported that radio astronomers may be able to use a future network of radio antennae as part of a very long baseline interferometry (VLBI) campaign. With enough observatories, we may be able to resolve the event horizon of the supermassive black hole lurking at the centre of the Milky Way, some 26,000 light years away from the Solar System.

The most exciting thing is that existing sub-millimeter observations of Sgr. A* (the radio source at the centre of our galaxy where the 4 million solar mass black hole lives) suggest there is some kind of active structure surrounding the black hole’s event horizon. If this is the case, a modest 7-antennae VLBI could observe dynamic flares as matter falls into the event horizon.

It would be a phenomenal scientific achievement to see a flare-up after a star is eaten by Sgr. A*, or to see the rotation of a possibly spinning black hole event horizon.

All of this may be a possibility, and through a combination of Sgr. A*’s mass and relatively close proximity to Earth, our galaxy’s supermassive black hole is predicted to have the largest apparent event horizon in the sky.

Or does it?

M87 Might be a Long Way Away, But…

As it turns out, there could be another challenger to Sgr. A*’s “largest apparent event horizon” crown. Sitting in the centre of the active galaxy called M87, 55 million light years away (that’s over 2,000 times further away than Sgr. A*), is a black hole behemoth.

M87’s supermassive black hole consumes vast amounts of matter, spewing jets of gas 5,000 light years from the core of the giant elliptical galaxy. And until now, astronomers have underestimated the size of this monster.

Karl Gebhardt (Univ. of Texas at Austin) and Thomas Jens (Max Planck Institute for Extraterrestrial Physics in Garching, Germany) took another look at M87 and weighed the galaxy by sifting through observational data with a supercomputer model. This new model accounted for the theorized halo of invisible dark matter surrounding M87. This analysis yielded a shocking result; the central supermassive black hole should have a mass of 6.4 billion Suns, double the mass of previous estimates.

Therefore, the M87 black hole is around 1,600 times more massive than our galaxy’s supermassive black hole.

A Measure for Dark Matter?

Now that the M87 black hole is much bigger than previously thought, there’s the tantalizing possibility of using the proposed VLBI to image M87’s black hole as well as Sgr. A*, as they should both have comparable event horizon dimensions when viewed from Earth.

Another possibility also comes to mind. Once an international VLBI is tested and proven to be an “event horizon telescope,” if we are able to measure the size of the M87 black hole, and its mass is confirmed to be in agreement with the Gebhardt-Jens model, perhaps we’ll have one of the first indirect methods to measure the mass of dark matter surrounding a galaxy…

Oh yes, this should be good.

UPDATE! How amiss of me, I forgot to include the best black hole tune ever:

Publication: The Black Hole Mass, Stellar Mass-to-Light Ratio, and Dark Matter Halo in M87, Karl Gebhardt et al 2009 ApJ 700 1690-1701, doi: 10.1088/0004-637X/700/2/1690.
Via: New Scientist

Listening Out for the Magnetospheres of Habitable Exoplanets

Searching for Earth-like exoplanets (© Mark Garlick)
Searching for Earth-like exoplanets (© Mark Garlick*)

Is there a new way to hunt for habitable Earth-like exoplanets? According to a US Naval Research Laboratory researcher there is an obvious, yet ingenious, way of listening for these worlds. Like most Earth-like exoplanet searches, we are looking for characteristics of our own planet. So what do we need to survive on Earth? Obviously we need water and the correct mix of oxygen with other atmospheric gases, but what about the magnetic bubble we live in? The Earth’s magnetosphere protects us from the worst the Sun can throw at us, preventing the atmosphere from being eroded into space and deflecting life-hindering radiation.

Although we have yet to develop sensitive enough radio telescopes, it may be possible in the future to detect the radio waves generated as charged particles in stellar winds interact with Earth-like exoplanetary magnetospheres. If there’s a magnetosphere, there may be a protected atmosphere. If there’s an atmosphere, perhaps there’s life being nurtured below

*This image is copyright Mark A. Garlick and has been used with permission. Please do not use this image in any way whatsoever without first contacting the artist.
Continue reading “Listening Out for the Magnetospheres of Habitable Exoplanets”