Newborn Star Found Growing Inside Magnetic Nest of Chaos

ProtoStarMagFieldLines
NRAO/AUI/NSF; D. Berry

Conventional wisdom would have us believe that stars form in extremely powerful and ordered magnetic fields. But “conventional,” our universe is not (as Yoda might say).

In a new and fascinating study published in Astrophysical Journal Letters and carried out by astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, a star some 1,400 light-years away in the Serpens star-forming region had its magnetic field gauged.

The star, called Ser-emb 8, is embedded inside the magnetic field passing through the molecular cloud it was born in. As the surrounding dust aligns itself with the direction of these magnetic field lines, ALMA is able to make precise measurements of the polarization of the emissions produced by this dust. From these incredibly sensitive measurements, a map of the polarization of light could be created, providing a view of the magnetic nest the star was born in.

newborn-star
Texture represents the magnetic field orientation in the region surrounding the Ser-emb 8 protostar, as measured by ALMA. The gray region is the millimeter wavelength dust emission. Credit: ALMA (ESO/NAOJ/NRAO); P. Mocz, C. Hull, CfA

And this nest is an unexpected one; it’s a turbulent region lacking the strong and ordered magnetism that would normally be predicted to be in the immediate vicinity of Ser-emb 8. Previous studies have shown newborn stars to possess powerful magnetic fields that take on an “hourglass” shape, extending from the protostar and reaching light-years into space. Ser-emb 8, however, is different.

“Before now, we didn’t know if all stars formed in regions that were controlled by strong magnetic fields. Using ALMA, we found our answer,” said astronomer Charles L. H. “Chat” Hull, at the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. “We can now study magnetic fields in star-forming clouds from the broadest of scales all the way down to the forming star itself. This is exciting because it may mean stars can emerge from a wider range of conditions than we once thought.”

By comparing these observations with computer simulations, an insightful view of the earliest magnetic environment surrounding a young star has been created.

“Our observations show that the importance of the magnetic field in star formation can vary widely from star to star,” added Hull in a statement. “This protostar seems to have formed in a weakly magnetized environment dominated by turbulence, while previous observations show sources that clearly formed in strongly magnetized environments. Future studies will reveal how common each scenario is.”

Hull and his team think that ALMA has witnessed a phase of star formation before powerful magnetic fields are generated by the young star, wiping out any trace of this pristine magnetic environment passing through the star forming region.