Beyond Spacetime: Gravitational Waves Might Reveal Extra-Dimensions

NASA (edit by Ian O’Neill)

We are well and truly on our way to a new kind of astronomy that will use gravitational waves — and not electromagnetic waves (i.e. light) — to “see” a side of the universe that would otherwise be invisible.

From crashing black holes to wobbling neutron stars, these cosmic phenomena generate ripples in spacetime and not necessarily emissions in the electromagnetic spectrum. So when the Laser Interferometer Gravitational-wave Observatory (LIGO) made its first gravitational wave detection in September 2015, the science world became very excited about the reality of “gravitational wave astronomy” and the prospect of detecting some of the most massive collisions that happen in the dark, billions of light-years away.

Like waves rippling over the surface of the ocean, gravitational waves travel through spacetime, a prediction that was made by Albert Einstein over a century ago. And like those ocean waves, gravitational waves might reveal something about the nature of spacetime.

We’re talking extra-dimensions and a new study suggests that gravitational waves may carry an awful lot more information with them beyond the characteristics of what generated them in the first place.

Our 4-D Playing Field

First things first, remember that we interact only with four-dimensional spacetime: three dimensions of space and one dimension of time. This is our playing field; we couldn’t care less whether there are more dimensions out there.

Unless you’re a physicist, that is.

And physicists are having a hard job describing gravity, to put it mildly. This might seem weird considering how essential gravity is for, well, everything. Without gravity, no stars would form, planets wouldn’t coalesce and the cosmos would be an exceedingly boring place. But gravity doesn’t seem to “fit” with the Standard Model of physics. The “recipe” for the universe is perfect, except it’s missing one vital ingredient: Gravity. (It’s as if a perfect cake recipe is missing one crucial ingredient, like flour.)

There’s another weird thing about gravity: Although it’s very important in our universe (yes, there might be more than one universe, but I’ll get to that later), it is actually the weakest of all forces.

But why so weak? This is where string theory comes in.

String theory (and, by extension, superstring theory) predicts that the universe is composed of strings that vibrate at different frequencies. These strings form something like a vast, superfine noodle soup and these strings thread through many dimensions (many more than our four-dimensions) creating all the particles and forces that we know and love.

Now, the possible reason why gravity is so weak when compared with the other fundamental forces could be that gravity is interacting with many more dimensions that are invisible to us 4-D beings. Although string theory is a wonderful mathematical tool to describe this possibility, there is little physical evidence to back up this superfine noodly mess, however.

But as already mentioned, if string theory holds true, it would mean that our universe contains many more dimensions than we regularly experience. (The unifying superstring theory, called “M-theory”, predicts a total of 11 dimensions and may provide the framework that unifies the fundamental forces and could be the diving board that launches us into the vast ocean that is the multiversebut I’ll stop there, I’ve said too much.)

Groovy. But what the heck has this got to do with gravitational waves? As gravitational waves travel through spacetime, they might be imprinted with information about these extra dimensions. Like our wave analogy, as the sea washes over a beach, the frequency of the waves increase as the water becomes shallower — the ocean waves are imprinted with information about how deep the water is. Could gravitational waves washing over (or, more accurately, through) spacetime also create some kind of signature that would reveal the presence of very, very tiny extra-dimensions as predicted by superstring theory?

Possibly, say researchers at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute/AEI) in Potsdam, Germany.

“Physicists have been looking for extra dimensions at the Large Hadron Collider at CERN but up to now this search has yielded no results,” says Gustavo Lucena Gómez, second author of a new study published in the Journal of Cosmology and Astroparticle Physics. “But gravitational wave detectors might be able to provide experimental evidence.”

Beyond Spacetime?

The researchers suggest that these extra-dimensions might modify the signal of gravitational waves received by detectors like LIGO and leave a very high-frequency “fingerprint.” But as this frequency would be exceedingly high — of the order of 1000 Hz — it’s not conceivable that the current (and near-future) ground-based gravitational wave detectors will be sensitive enough to even hope to detect these frequencies.

However, extra-dimensions might modify the gravitational waves in a different way. As gravitational waves propagate, they stretch and shrink the spacetime they travel through, like this:


The amount of spacetime warping might therefore be detected as more gravitational wave detectors are added to the global network. Currently, LIGO has two operating observing stations (one in Washington and one in Louisiana) and next year, the European Virgo detector will start taking data.

More detectors are planned elsewhere, so it’s possible that we may, one day, use gravitational waves to not only “see” black holes go bump in the night, we might also “see” the extra-dimensions that form the minuscule tapestry of the fabric beyond spacetime. And if we can do this, perhaps we’ll finally understand why gravity is so weak and how it really fits in with the Standard Model of physics.

Want to know more about gravitational waves? Well, here’s an Astroengine YouTube video on the topic: