Cassini Finds ‘Nothing’ in Saturn’s Ring Gap

NASA/JPL-Caltech

It’s official, there’s a whole lot of nothing in Saturn’s innermost ring gap.

This blunt — and slightly mysterious — conclusion was reached when scientists studied Cassini data after the spacecraft’s first dive through the gas giant’s ring plane. At first blush, this might not sound so surprising; the 1,200-mile-wide gap between Saturn’s upper atmosphere and the innermost edge of its rings does appear like an empty place. But as the NASA spacecraft barreled through the gap on April 26, mission scientists expected Cassini to hit a few stray particles on its way through.

Instead, it hit nothing. Or, at least, far fewer particles than they predicted.

“The region between the rings and Saturn is ‘the big empty,’ apparently,” said Earl Maize, Cassini’s project manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Cassini will stay the course, while the scientists work on the mystery of why the dust level is much lower than expected.”

Using Cassini’s Radio and Plasma Wave Science (RPWS), the scientists expected to detect multiple “cracks and pops” as the spacecraft shot through the gap. Instead, it picked up mainly signals from energetic charged particles buzzing in the planet’s magnetic field. When converted into an audio file, these signals make a whistling noise and this background whistle was expected to be drowned out by the ruckus of dust particles bouncing off the spacecraft’s body. But, as the following audio recording proves, very few pops and cracks of colliding debris were detected — it sounds more like an off-signal radio tuner:

Compare that with the commotion Cassini heard as it passed through the ring plane outside of Saturn’s rings on Dec. 18, 2016:

Now that is what it sounds like to get smacked by a blizzard of tiny particles at high speed.

“It was a bit disorienting — we weren’t hearing what we expected to hear,” said William Kurth, RPWS team lead at the University of Iowa, Iowa City. “I’ve listened to our data from the first dive several times and I can probably count on my hands the number of dust particle impacts I hear.”

From this first ring gap dive, NASA says Cassini likely only hit a handful of minute, 1 micron particles — particles no larger than those found in smoke. And that’s a bit weird.

As weird as it may be, the fact that the region of Cassini’s first ring dive is emptier than expected now allows mission scientists to carry out optimized science operations with the spacecraft’s instruments. On the first pass, Cassini’s dish-shaped high-gain antenna was used as a shield to protect the spacecraft as it made the dive. On its next ring dive, which is scheduled for Tuesday at 12:38 p.m. PT (3:38 p.m. ET), this precaution is evidently not needed and the spacecraft will be oriented to better view the rings as it flies through.

So there we have it, the first mysterious result of Cassini’s awesome Grand Finale! 21 ring dives to go…

Advertisements

Exoplanets Are Sacrificing Moons to Their White Dwarf Overlords

An artist’s impression of a planet, comet and debris field surrounding a white dwarf star (NASA/ESA)

As if paying tribute, exoplanets orbiting white dwarfs appear to be throwing their exomoons into hot atmospheres of these stellar husks.

This fascinating conclusion comes from a recent study into white dwarf stars that appear to have atmospheres that are “polluted” with rocky debris.

A white dwarf forms after a sun-like star runs out of hydrogen fuel and starts to burn heavier and heavier elements in its core. When this happens, the star bloats into a red giant, beginning the end of its main sequence life. After the red giant phase, and the star’s outer layers have been violently ripped away by powerful stellar winds, a small bright mass of degenerate matter (the white dwarf) and a wispy planetary nebula are left behind.

But what of the planetary system that used to orbit the star? Well, assuming they weren’t so close to the dying star that they were completely incinerated, any exoplanets remaining in orbit around a white dwarf have an uncertain future. Models predict that dynamical chaos will ensue and gravitational instabilities will be the norm. Exoplanets will shift in their orbits, some might even be flung clear of the star system all together. One thing is for sure, however, the tidal shear created by the compact white dwarf will be extreme, and should anything stray too close, it will be ripped to shreds. Asteroids will be pulverized, comets will fall and even planets will crumble.

Stray too close to a white dwarf and tidal shear will rip you to shreds (NASA/JPL-Caltech)

Now, in a science update based on research published late last year in the journal Monthly Notices of the Royal Astronomical Society, astronomers of the Harvard-Smithsonian Center for Astrophysics (CfA) have completed a series of simulations of white dwarf systems in an attempt to better understand where the “pollution” in these tiny stars’ atmospheres comes from.

To explain the quantities observed, the researchers think that not only is it debris from asteroids and comets, but the gravitational instabilities that throw the system into chaos are booting any moons — so-called exomoons — out of their orbits around exoplanets, causing them to careen into the white dwarfs.

The simulations also suggest that as the moons meander around the inner star system and fall toward the star, their gravities scramble to orbits of more asteroids and comets, boosting the around of material falling into the star’s atmosphere.

So there you have it, planets, should your star turn into a white dwarf (as our sun will in a few billion years), keep your moons close — your new stellar overlord will be asking for a sacrifice in no time.