Black Hole’s Personality Not as Magnetic as Expected

V404Cyg_XRT_halo_fullsize
This 2015 NASA Swift observation of V404 Cygni shows the X-ray echoes bouncing off rings of dust surrounding the binary system after the X-ray nova (Andrew Beardmore/Univ. of Leicester/NASA/Swift)

In 2015, a stellar-mass black hole in a binary star system underwent an accretion event causing it to erupt brightly across the electromagnetic spectrum. Slurping down the plasma from its stellar partner — an unfortunate sun-like star — the eruption became a valuable observation for astronomers and, in a recent study, researchers have used the event to better understand the magnetic environment surrounding the black hole.

The binary system in question is V404 Cygni, located 7,795 light-years from Earth, and that 2015 outburst was an X-ray nova, an eruption that previously occurred in 1989. Detected by NASA’s Swift space observatory and the Japanese Monitor of All-sky X-ray Image (MAXI) on board the International Space Station, the event quickly dimmed, a sign that the black hole had consumed its stellar meal.

Combining these X-ray data with observations by radio, infrared and optical telescopes, an international team of astronomers were able to measure emissions from the plasma close to the black hole’s event horizon as it cooled.

The black hole was formed after a massive star ran out of fuel and exploded as a supernova. Much of the magnetism of the progenitor star would have been retained post-supernova, so by measuring the emissions from the highly charged plasma, astronomers have a tool to probe deep inside the black hole’s “corona.” Like the sun’s corona — which is a magnetically-dominated region where solar plasma interacts with our star’s magnetic field (producing the solar wind and solar flares, for example) — it’s predicted that there should be a powerful interplay between the accreting plasma and the black hole’s coronal magnetism.

As charged particles interact magnetic fields, they experience acceleration radially (i.e. they spin around the magnetic field lines that guide their direction of propagation) and, should the magnetism be extreme (in a solar or, indeed, black hole’s corona), this plasma can be accelerated to relativistic speeds. In this case, synchrotron radiation may be generated. By measuring the radiation across all wavelengths, astronomers can thereby probe the magnetic environment close to a black hole as this radiation is directly related to how powerful a magnetic field is generating it.

black-hole
A black hole with a magnetic field threading through an accretion disk (ESO)

According to the study, published in the journal Science on Dec. 8, V404 Cygni’s hungry black hole has a much weaker magnetic field than theory would suggest. And that’s a bit of a problem.

The researchers write: “Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems.”

Black holes are poorly understood, but with the advent of gravitational wave (and “multimessenger”) astronomy and the excitement surrounding the Event Horizon Telescope, in the next few years we’re going to get a lot more intimate with these gravitational enigmas. Why this particular black hole’s magnetic environment is weaker than what would be expected, however, suggests that our theories surrounding black hole evolution are incomplete, so there will likely be some surprises in store.

“We need to understand black holes in general,” said collaborator Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), in a statement. “If we go back to the very earliest point in our universe, just after the Big Bang, there seems to have always been a strong correlation between black holes and galaxies. It seems that the birth and evolution of black holes and galaxies, our cosmic island, are intimately linked. Our results are surprising and one that we’re still trying to puzzle out.”

We’re Really Confused Why Supermassive Black Holes Exist at the Dawn of the Cosmos

eso1229a
ESO

Supermassive black holes can be millions to billions of times the mass of our sun. To grow this big, you’d think these gravitational behemoths would need a lot of time to grow. But you’d be wrong.

When looking back into the dawn of our universe, astronomers can see these monsters pumping out huge quantities of radiation as they consume stellar material. Known as quasars, these objects are the centers of primordial galaxies with supermassive black holes at their hearts.

Now, using the twin W. M. Keck Observatory telescopes on Hawaii, researchers have found three quasars all with billion solar mass supermassive black holes in their cores. This is a puzzle; all three quasars have apparently been active for short periods and exist in an epoch when the universe was less than a billion years old.

Currently, astrophysical models of black hole accretion (basically models of how fast black holes consume matter — likes gas, dust, stars and anything else that might stray too close) woefully overestimate how long it takes for black holes to grow to supermassive proportions. What’s more, by studying the region surrounding these quasars, researchers at the Max Planck Institute for Astronomy (MPIA) in Germany have found that these quasars have been active for less than 100,000 years.

To put it mildly, this makes no sense.

“We don’t understand how these young quasars could have grown the supermassive black holes that power them in such a short time,” said lead author Christina Eilers, a post-doctorate student at MPIA.

Using Keck, the team could take some surprisingly precise measurements of the quasar light, thereby revealing the conditions of the environment surrounding these bright baby galaxies.

discoveryint
MPIA

Models predict that after forming, quasars began funneling huge quantities of matter into the central black holes. In the early universe, there was a lot of matter in these baby galaxies, so the matter was rapidly consumed. This created superheated accretion disks that throbbed with powerful radiation. The radiation blew away a comparatively empty region surrounding the quasar called a “proximity zone.” The larger the proximity zone, the longer the quasar had been active and therefore the size of this zone can be used to gauge the age (and therefore mass) of the black hole.

But the proximity zones measured around these quasars revealed activity spanning less than 100,000 years. This is a heartbeat in cosmic time and nowhere near enough time for a black hole pack on the supermassive pounds.

“No current theoretical models can explain the existence of these objects,” said Joseph Hennawi, who led the MPIA team. “The discovery of these young objects challenges the existing theories of black hole formation and will require new models to better understand how black holes and galaxies formed.”

The researchers now hope to track down more of these ancient quasars and measure their proximity zones in case these three objects are a fluke. But this latest twist in the nature of supermassive black holes has only added to the mystery of how they grow to be so big and how they relate to their host galaxies.

Supermassive black hole with torn-apart star (artist’s impress
A supermassive black hole consumes a star in this artist’s impression (ESO)

These questions will undoubtedly reach fever-pitch later this year when the Event Horizon Telescope (EHT) releases the first radio images of the 4 million solar mass black hole lurking at the center of our galaxy. Although it’s a relative light-weight among supermassives, direct observations of Sagittarius A* may uncover some surprises as well as confirm astrophysical models.

But as for how supermassive black holes can possibly exist at the dawn of our universe, we’re obviously missing something — a fact that is as exciting as it is confounding.

Chances of the World Being Destroyed by the LHC is 50:50. Yes, Walter Wagner Is Back!

It’s one of those occasions when you’re not sure whether you should laugh… or hold back your giggling because you realise you’re witnessing some very well produced train-wreck TV.

Oh yes, it can mean only one thing, Walter Wagner is back! But this time, the media came prepared.

They made fun of him.

Yes, it was the Jon Stewart Show, and yes it was satire, but this time the joke was on the crackpot notion that the Large Hadron Collider (LHC) could actually cause harm to the world.

The subject of the LHC drove me insane last year (it also annoyed some very high profile physicists); it became almost impossible to report on the research CERN scientists were hoping to carry out, as every day Wagner (with his ‘lawsuit’ craziness) or Rossler (with his ‘infringement of human rights’ nonsense) would pop up, forcing any decent physics article into a defence of the LHC. Needless to say, this annoyed many physicists involved in the LHC, but excited media doomsday headlines into a frenzy of doomsday crackpottery.

Now, Wagner has been caught out and been made a fool of. Although I hate to see anyone in this situation, in this case, I think it is needed. Wagner only has himself to blame. He started these doomsday theories, now it’s up to mainstream comedy shows to debunk his authority on the subject.

Hold on, did he ever have an authority over physics? Oh yes, that’s right. No, he didn’t. He used the media as a tool to gain attention.

On the other hand, physicist Prof. John Ellis is an authority on physics… in fact, he’s the authority on LHC physics. I think I’d put my trust in an evil genius with a PhD and decades of experience, rather than the Caped Wagner Crusader any day.

For more on the subject, check out Ethan’s Starts With A Bang, he has more patience than me and delves into the subject a bit more »

Here’s more LHC goodness if you’re hungry for more »

Source: Gia via Twitter

Is the Universe a Holographic Projection?

Luke and Obi-Wan look at a 3D hologram of Leia projected by R2D2 (Star Wars)
Luke and Obi-Wan look at a 3D hologram of Leia projected by R2D2 (Star Wars)

Could our cosmos be a projection from the edge of the observable Universe?

Sounds like a silly question, but scientists are seriously taking on this idea. As it happens, a gravitational wave detector in Germany is turning up null results on the gravitational wave detection front (no surprises there), but it may have discovered something even more fundamental than a ripple in space-time. The spurious noise being detected at the GEO600 experiment has foxed physicists for some time. However, a particle physicist from the accelerator facility Fermilab has stepped in with his suspicion that the GEO600 “noise” may not be just annoying static, it might be the quantum structure of space-time itself
Continue reading “Is the Universe a Holographic Projection?”

I Wish Office Work Was This Interesting

Having just stumbled around the space blogs, I was enthusiastic that I would find some inspiration toward my next Astroengine.com article. Along the way, I found this rather entertaining short film on Phil Plait’s Bad Astronomy website. As Phil points out, “black holes don’t work this way.” Although, that is a shame.

There’s a strong moral to this story: don’t photocopy alone, as you never know when your Xerox machine will print out a singularity. Well, not really, perhaps the guy should have stopped at stealing a snickers bar, a lesson we could all learn from. Actually, I might have walked off with just one wad of cash… actually, maybe two… you get the picture.

Needless to say, this isn’t actually how a black hole works… it’s not even how a wormhole would work. But take the short film at face value and get some entertainment from it, I thought it was quite good fun.

Probing Variable Black Holes

Artist impression of a black hole feeding off its companion star... and a rogue Higgs particle (ESO/L. Calçada)
Artist impression of a black hole feeding off its companion star... and a rogue Higgs particle (ESO/L. Calçada/Particle Zoo)

Black holes are voracious eaters. They devour pretty much anything that strays too close. They’re not fussy; dust, gas, plasma, Higgs bosons, planets, stars, even photons are on the menu. However, for astronomers, interesting things can be observed if a star starts to be cannibalized by a neighbouring black hole. Should a star be unlucky enough to have a black hole as its binary partner, the black hole will begin to strip the stars upper layers, slowly consuming it on each agonizing orbit. Much like water spiralling down a plug hole, the tortured plasma from the star is gravitationally dragged on a spiral path toward the black hole’s event horizon. As stellar matter falls down the event horizon plug hole, it reaches relativistic velocities, blasting a huge amount of radiation into space. And now, astronomers have taken different observations from two observatories to see how the visible emissions correlate with the X-ray emissions from two known black hole sources. What they discovered came as a surprise
Continue reading “Probing Variable Black Holes”

No Naked Singularity After Black Hole Collision

Black holes cannot be naked... the event horizon will always be there to cover them up...
Black holes cannot be naked... the event horizon will always be there to cover them up...

You can manipulate a black hole as much as you like but you’ll never get rid of its event horizon, a new study suggests. This may sound a little odd, the event horizon is what makes the black hole, well… black. However, in the centre of a black hole, hidden deep inside the event horizon, is a singularity. A singularity is a mathematical consequence, it is also a point in space where the laws of physics do not apply. Mathematics also predicts that singularities can exist without an associated event horizon, but this means that we’d be able to physically see a black hole’s singularity. This theoretical entity is known as a “naked singularity” and physicists are at a loss to explain what one would look like.

Like any good physics experiment, an international team from the US, Germany, Portugal and Mexico have decided to simulate the most extreme situation possible in the aim of stripping a pair of black holes of their event horizons. They did this by constructing an energetic collision between two black holes travelling close to the speed of light, crashing head-on. Here’s what they discovered…
Continue reading “No Naked Singularity After Black Hole Collision”