Hitching a Ride on an ‘Evolving Asteroid’ to Travel to the Stars

evolvingaste
The interstellar asteroid spaceship concept that would contain all the resources required to maintain a generations of star travelers (Nils Faber & Angelo Vermeulen)

When ʻOumuamua visited our solar system last year, the world’s collective interest (and imagination) was firing on all cylinders. Despite astronomers’ insistence that asteroids from other star systems likely zip through the solar system all the time (and the reason why we spotted this one is because our survey telescopes are getting better), there was that nagging sci-fi possibility that ʻOumuamua wasn’t a natural event; perhaps it was an interstellar spaceship piloted by (or at least once piloted by) some kind of extraterrestrial — “Rendezvous With Rama“-esque — intelligence. Alas, any evidence for this possibility has not been forthcoming despite the multifaceted observation campaigns that followed the interstellar vagabond’s dazzling discovery.

Still, I ponder that interstellar visitor. It’s not that I think it’s piloted by aliens, though that would be awesome, I’m more interested in the possibilities such objects could provide humanity in the future. But let’s put ʻOumuamua to one side for now and discuss a pretty nifty project that’s currently in the works and how I think it could make use of asteroids from other stars.

Asteroid Starships Ahoy!

As recently announced by the European Space Agency, researchers at Delft University of Technology, Netherlands, are designing a starship. But this isn’t your run-of-the-mill solar sail or “warpship.” The TU Delft Starship Team, or DSTART, aims to bring together many science disciplines to begin the ground-work for constructing an interstellar vehicle hollowed out of an asteroid.

Obviously, this is a long-term goal; humanity is currently having a hard enough time becoming a multiplanetary species, let alone a multistellar species. But from projects like these, new technologies may be developed to solve big problems and those technologies may have novel applications for society today. Central to ESA’s role in the project is an exciting regenerative life-support technology that is inspired by nature, a technology that could reap huge benefits not only for our future hypothetical interstellar space fliers.

Called the MELiSSA (Micro-Ecological Life Support System Alternative) program, scientists are developing a system that mimics aquatic ecosystems on Earth. A MELiSSA pilot plant in Barcelona is capable of keeping rat “crews” alive for months at a time inside an airtight habitat. Inside the habitat is a multi-compartment loop with a “bioreactor” at its core, which consists of algae that produces oxygen (useful for keeping the rats breathing) while scrubbing the air of carbon dioxide (which the rats exhale). The bioreactor was recently tested aboard the International Space Station, demonstrating that the system could be applied to a microgravity environment.

Disclaimer: Space Is Really Big

Assuming that humanity isn’t going to discover faster-than-light (FTL) travel any time soon, we’re pretty much stuck with very pedestrian sub-light-speed travel times to the nearest stars. Even if we assume some sensible iterative developments in propulsion technologies, the most optimistic projections in travel time to the stars is many decades to several centuries. While this is a drag for our biological selves, other research groups have shown that robotic (un-crewed) missions could be done now — after all, Voyager 1 is currently chalking up some mileage in interstellar space and that spacecraft was launched in the 1970’s! But here’s the kicker: Voyager 1 is slow (even if it’s the fastest and only interstellar vehicle humanity has built to date). If Voyager 1 was aimed at our closest star Proxima Centauri (which it’s not), it would take tens of thousands of years to get there.

But say if we could send a faster probe into interstellar space? Projects like Icarus Interstellar and Breakthrough Starshot are approaching this challenge with different solutions, using technology we have today (or technologies that will likely be available pretty soon) to get that travel time down to less than one hundred years.

One… hundred… years.

Sending robots to other stars is hard and it would take generations of scientists to see an interstellar mission through from launch to arrival — which is an interesting situation to ponder. But add human travelers to the mix? The problems just multiplied.

The idea of “worldships” (or generation ships) have been around for many years; basically vast self-sustaining spaceships that allow their passengers to live out their lives and pass on their knowledge (and mission) to the next generation. These ships would have to be massive and contain everything that each generation needs. It’s hard to comprehend what that starship would look like, though DSTART’s concept of hollowing out an asteroid to convert it into an interstellar vehicle doesn’t sound so outlandish. To hollow out an asteroid and bootstrap a self-sustaining society inside, however, is a headache. Granted, DSTART isn’t saying that they are actually going to build this thing (their project website even states: “DSTART is not developing hardware, nor is it building an actual spacecraft”), but they do assume some magic is going to have to happen before it’s even a remote possibility — such as transformative developments in nanotechnology, for example. The life-support system, however, would need to be inspired by nature, so ESA and DSTART scientists are going to continue to help develop this technology for self-sustaining, long-duration missions, though not necessarily for a massive interstellar spaceship.

Hyperbolic Space Rocks, Batman!

Though interesting, my reservation about the whole thing is simple: even if we did build an asteroid spaceship, how the heck would we accelerate the thing? This asteroid would have to be big and probably picked out of the asteroid belt. The energy required to move it would be extreme; to propel it clear of the sun’s gravity (potentially via a series of gravitational assists of other planets) could rip it apart.

So, back to ʻOumuamua.

The reason why astronomers knew ʻOumuamua wasn’t from ’round these parts was that it was moving really, really fast and on a hyperbolic trajectory. It basically barreled into our inner star system, swung off our sun’s gravitational field and slingshotted itself back toward the interstellar abyss. So, could these interstellar asteroids, which astronomers estimate are not uncommon occurrences, be used in the future as vehicles to escape our sun’s gravitational domain?

Assuming a little more science fiction magic, we could have extremely advanced survey telescopes tasked with finding and characterizing hyperbolic asteroids that could spot them coming with years of notice. Then, we could send our wannabe interstellar explorers via rendezvous spacecraft capable of accelerating to great speeds to these asteroids with all the technology they’d need to land on and convert the asteroid into an interstellar spaceship. The momentum that these asteroids would have, because they’re not gravitationally bound to the sun, could be used as the oomph to achieve escape velocity and, once setting up home on the rock, propulsion equipment would be constructed to further accelerate and, perhaps, steer it to a distant target.

If anything, it’s a fun idea for a sci-fi story.

I get really excited about projects like DSTART; they push the limits of human ingenuity and force us to find answers to seemingly insurmountable challenges. Inevitably, these answers can fuel new ideas and inspire younger generations to be bolder and braver. And when these projects start partnering with space agencies to develop existing tech, who knows where they will lead.

‘Crasher Asteroids’ Photobomb Hubble’s Deep Gaze Into the Universe

asteroid-trails
NASA, ESA, and B. Sunnquist and J. Mack (STScI)

Like the infamous “Crasher Squirrel” that launched one of the most prolific memes in online history, “crasher asteroids” have photobombed the Hubble Space Telescope’s otherwise uninterrupted view of the ancient universe.

While carrying out its Frontier Fields survey of a random postage stamp-sized part of the sky in the direction of the galaxy cluster Abell 370, Hubble imaged many galaxies located at different distances over different epochs in time.

Visible in the observation are elliptical galaxies and spiral galaxies. Many are bright and bluish, but the vast majority are dim and reddish. The reddest blobs are the most distant galaxies in our observable universe; their light has been stretched (red-shifted) after traveling for billions of years through an expanding cosmos. These galaxies are the most ancient galaxies that formed within a billion years after the Big Bang.

But mixed in with this Hubble view of ancient light are bright arcs and dashes — tracks carved out by the rocky junk in our own solar system that is drifting in Hubble’s field of view, located a mere 160 million miles from Earth (on average). It’s sobering to think that the light from the reddest galaxies is nearly three times older than these asteroids.*

Abel 370 is located along the solar system’s ecliptic plane, around which the planets orbit the sun and the majority of asteroids in the asteroid belt between Mars and Jupiter are located. So, like looking through a swarm of bees, Hubble has captured the trails of asteroids in the foreground.

The trails themselves are created not by the motion of the asteroids, however, but by the motion of Hubble. While fixing its gaze on distant galaxies for hours at a time as it orbits Earth, Hubble’s position changes and, through an observational effect known as parallax, the positions of those asteroids appear to trace an arc when compared with the stationary background of galaxies billions of light-years distant.

As Hubble scanned its field of view, it revealed 20 asteroid trails, seven of which are unique objects (some of the asteroid trails were repeated observations of the same object, just captured at different times in Hubble’s orbit). Only two of these asteroids were previously discovered, the other five are newly discovered objects that were too faint for other observatories to detect.

So it goes to show that photobombing asteroids are useful for science and, though Hubble was observing the most distant objects in the cosmos, it was able to see a few of the rocks in our cosmic backyard.

*NOTE: Asteroids formed around the time our solar system first started creating planets, some 4.6 billion years ago. The most ancient galaxies are located over 13 billion light-years away, meaning the ancient light from those galaxies was produced 13 billion years ago.

Friday Flashback: Banff Ground Squirrel Witnessed Apollo 11 Landing (2009)

Buzz Aldrin poses for Armstrong's camera in 1969. Little did the astronauts realize... they were being watched... (NASA/NatGeo/Ian O'Neill)
Buzz Aldrin poses for Armstrong’s camera in 1969. Little did the astronauts realize… they were being watched… (NASA/NatGeo/Ian O’Neill)

Heavy Stellar Traffic Sends Dangerous Comets Our Way

New image of comet ISON
Comet C/2012 S1 (ISON) as imaged by TRAPPIST–South national telescope at ESO’s La Silla Observatory in 2013 (TRAPPIST/E. Jehin/ESO)

Sixty-six million years ago Earth underwent a cataclysmic change. Back then, our planet was dominated by dinosaurs, but a mass extinction event hastened the demise of these huge reptiles and paved the way for the mammalian takeover. Though there is some debate as to whether the extinction of the dinosaurs was triggered by an isolated disaster or a series of disasters, one event is clear — Earth was hit by a massive comet or asteroid and its impact had global ramifications.

The leading theory is that a massive comet slammed into our planet, creating the vast Chicxulub Crater buried under the Yucatán Peninsula in Mexico, enshrouding the atmosphere in fine debris, blotting out the sun for years.

Although there is strong evidence of comet impacts on Earth, these deep space vagabonds are notoriously hard to track, let alone predict when or how often they may appear. All we know is that they are out there, there are more than we thought, they are known to hit planets in the solar system and they can wreak damage of apocalyptic proportions.

Now, using fresh observations from the European Space Agency’s Gaia mission, astronomer Coryn Bailer-Jones, who works at the Max Planck Institute for Astronomy in Munich, Germany, has added an interesting component to our understanding of cometary behavior.

Stellar Traffic

Long-period comets are the most mysterious — and troubling — class of comet. They will often appear from nowhere, after falling from their distant gravitational perches, zoom through the inner solar system and disappear once more — often to be never seen again. Or they hit something on their way through. These icy bodies are the pristine left-overs of our solar system’s formation five billion years ago, hurled far beyond the orbits of the planets and into a region called the Oort Cloud.

In the Oort Cloud these ancient masses have remained in relative calm far from the gravitational instabilities close to the sun. But over the eons, countless close approaches by other stars in our galactic neighborhood have occurred, causing very slight gravitational nudges to the Oort Cloud. Astronomers believe that such stellar encounters are responsible for knocking comets from this region, sending them on a roller-coaster ride to the inner solar system.

The Gaia mission is a space telescope tasked with precisely mapping the distribution and motion of stars in our galaxy, so Bailer-Jones has investigated the rate of stellar encounters with our solar system. Using information in Gaia’s first data release (DR1), Bailer-Jones has published the first systematic estimate of stellar encounters — in other words, he’s estimated the flow of stellar traffic in the solar system’s neighborhood. And the traffic was found to be surprisingly heavy.

In his study, to be published in the journal Astronomy & Astrophysics, Bailer-Jones estimates that, on average, between 490 and 600 stars will come within 16.3 light-years (5 parsecs) of our sun and 19-24 of them will come within 3.26 light-years (1 parsec) every million years.

According to a press release, all of these stars will have some gravitational effect on the solar system’s Oort Cloud, though the closest encounters will have a greater influence.

This first Gaia data release is valid for five million years into the past and into the future, but astronomers hope the next data release (DR2) will be able to estimate stellar traffic up to 25 million years into the past and future. To begin studying the stellar traffic that may have been responsible for destabilizing the dinosaur-killing comet that hit Earth 66 million years ago will require a better understanding of the mass distribution of our galaxy (and how it influences the motion of stars) — a long-term goal of the Gaia project.

An Early Warning?

Spinning this idea into the future, could this project be used to act as an early warning system? Or could it be used to predict when and where a long-period comet may appear in the sky?

In short: “No,” Bailer-Jones told Astroengine via email. “Some close stellar encounters will for sure shake up the Oort cloud and fling comets into the inner solar system, but which comets on which orbits get flung in we cannot observe.”

He argues that the probability of comets being gravitationally nudged can be modeled statistically, but this would require a lot of assumptions to be made about the Oort Cloud, a region of space that we know very little about.

Also, the Oort Cloud is located well beyond the sun’s heliosphere and is thought to be between 50,000 and 200,000 AU (astronomical units, where 1 AU is the average distance between the sun and the Earth) away, so it would take a long time for comets to travel from this region, creating a long lag-time between stellar close approach and the comet making an appearance.

“Typically it takes a few million years for a comet to reach the inner solar system,” he added, also pointing out that other factors can complicate calculations, such as Jupiter’s enormous gravity that can deflect the passage of comets, or even fling them back out of the solar system again.

This is a fascinating study that goes to show that gravitational perturbations in the Oort Cloud are far from being rare events. A surprisingly strong flow of stellar traffic will constantly rattle otherwise inert comets, but how many are dislodged and sent on the long journey to the solar system’s core remains a matter for statistics and probability.

Great Balls of ‘Space Mud’ May Have Built Earth and Delivered Life’s Ingredients

space-mud
Artist’s impression of the molten surface of early Earth (NASA)

When imagining how our planet formed 4.6 billion years ago from the protoplanetary disk surrounding our sun, images of large pieces of marauding space rock slamming into the molten surface of our proto-Earth likely come to mind.

But this conventional model of planetary creation may be missing a small, yet significant, detail. Those massive space rocks may not have been the conventional solid asteroids — they might have been massive balls of space mud.

This strange detail of planetary evolution is described in a new study published in the American Association for the Advancement of Science (AAAS) journal Science Advances and it kinda makes logical sense.

Using the wonderfully-named Mars and Asteroids Global Hydrology Numerical Model (or “MAGHNUM”), planetary scientists Phil Bland (Cornell University) and Bryan Travis (Planetary Science Institute) simulated the movement of material inside primordial carbonaceous chondrite asteroids — i.e. the earliest asteroids that formed from the sun’s protoplanetary disk that eventually went on to become the building blocks for Earth.

space-mud1.jpg
A simulated cross section of a 200-meter wide asteroid showing its internal temperature profile and convection currents (temperatures in Celsius). Credit: PSI

It turns out that these first asteroids weren’t cold and solid lumps of rock at all. By simulating the distribution of rock grains inside these asteroids, the researchers realized that the internal heat of the objects would have melted the icy volatiles inside, which then mixed with the fine dust particles. Convection would have then dominated a large portion of these asteroids, causing continuous mixing of water and dust. Like a child squishing a puddle of dirt to create sloppy “mud pies,” this convection would have formed a ball of, you guessed it, space mud.

Travis points out that “these bodies would have accreted as a high-porosity aggregate of igneous clasts and fine-grained primordial dust, with ice filling much of the pore space. Mud would have formed when the ice melted from heat released from decay of radioactive isotopes, and the resulting water mixed with fine-grained dust.”

In other words: balls of mud held together by mutual gravity, gently convected by the heat produced by the natural decay of radioactive materials.

Should this model hold up to further scrutiny, it has obvious implications for the genesis of life on Earth and could impact the study of exoplanets and their habitable potential. The ingredients for life on Earth originated in the primordial protoplanetary soup, but until now the assumption has been that the space rocks carrying water and other chemicals were solid and frozen. If they were in fact churning away in space as dynamic mud asteroids, they could have been the “pressure cookers” that delivered those ingredients to Earth’s surface.

So the next question would be: how did these exotic asteroids shape life on Earth?

MU69: New Horizons’ Next Kuiper Belt Target Is One Big Mystery

mu-mu-land
Not as advertised? 2014 MU69 could be one big Kuiper Belt mess (NASA/JHU-APL/SwRI/Steve Gribben)

“All bound for Mu Mu Land” — The KLF, ‘Justified and Ancient’ (seems appropriate)

After visiting Pluto on July 14, 2015, NASA’s epic New Horizons mission soared into the great unknown, a.k.a. the Kuiper Belt. This strange region, which extends beyond Pluto’s orbit, is known to be populated with dwarf planets, comets, asteroids and junk that was left behind after the solar system’s formation, five billion years ago.

In an effort to better understand the solar system’s boondocks, New Horizons is on a trajectory that will create a second flyby opportunity. On New Year’s Day 2019, the spacecraft will buzz a mysterious object called 2014 MU69. But although we know this Kuiper Belt Object is out there, astronomers aren’t entirely sure what it is. And that’s a bit of a problem.

For two seconds on June 3, astronomers were presented with an opportunity to better observe MU69, but instead of clearing up its mystery the occultation event has created more questions than answers.

An occultation is when an object, like a distant asteroid, drifts in front of a background star. If astronomers time it perfectly, they can observe the star at the time of occultation in a bid to image the tiny shadow that will rapidly speed across our planet. And in the case of the June 3 event, dozens of mission team members and collaborators were ready and waiting along the predicted shadow track in South Africa and Argentina. In all, 100,000 images were taken of the star during the rapid occultation.

What they saw — or, indeed, didn’t see — is a bit of a conundrum.

“These data show that MU69 might not be as dark or as large as some expected,” said Marc Buie, a New Horizons science team member and occultation team leader from Southwest Research Institute (SwRI) in Boulder, Colo., in a statement.

Observations by the Hubble Space Telescope had previously estimated that MU69 is between 12- to 25-miles wide. That might be a pretty big overestimation by all accounts. And it may not be a single object at all.

“These results are telling us something really interesting,” said Alan Stern, New Horizons Principal Investigator also of SwRI. “The fact that we accomplished the occultation observations from every planned observing site but didn’t detect the object itself likely means that either MU69 is highly reflective and smaller than some expected, or it may be a binary or even a swarm of smaller bodies left from the time when the planets in our solar system formed.”

If it’s the latter, this could pose a problem for New Horizons.

Before the mission encountered Pluto in 2015, there was concern that the dwarf planet’s neighborhood might have been filled with debris. This concern was heightened after Pluto’s moons Styx and Kerberos were revealed by Hubble in 2011, only four years before New Horizons was set to barrel through the system. If there were more sub-resolution chunks near Pluto, they would have been regarded as collision risks.

Although New Horizons survived the Pluto encounter, if MU69 is a swarm of debris and not a solid object, mission scientists will have to assess the impact risk once again when New Horizons attempts its second flyby in 2019.

More occultations are forecast for July 10 and July 17, and NASA will also be flying its airborne observatory SOFIA through the occultation path on July 10 in hopes of better resolving MU69’s true nature.

So, as New Horizons speeds toward MU69, one of the most ancient objects in our sun’s domain, mystery and potential danger awaits.

Can We Call the Bright Spot in Ceres’ Occator Crater a Cryovolcano Yet?

Evidence is mounting around the cryovolcanic history of the solar system’s innermost dwarf planet — and its most recent eruptions may have happened within the last four million years.

NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Since NASA’s Dawn mission arrived at dwarf planet Ceres in 2015, we’ve been treated to some wonderfully detailed images of the small world’s pockmarked terrain. Understanding the underlying processes of what is believed to be an ice-filled celestial body, however, is taking some time to decipher. But with more observations comes more understanding and planetary scientists are getting close to realizing what lies beneath those craters and, possibly, unlocking the secrets behind a very icy and very alien phenomenon we have no experience of in our terrestrial lives.

That phenomenon is cryovolcanoes. And Ceres seems to have them.

The most startling feature on Ceres is Occator Crater. This 57 mile-wide feature is the result of a massive impact tens of millions of years ago. Large craters on small worlds isn’t necessarily a strange thing in our battered solar system, but what is strange about Occator is the very bright feature (and small bright patches surrounding it) in the crater’s center. Even before Dawn arrived in orbit and only fuzzy images of Ceres were available, hopes were high that this bright anomaly in the otherwise gray Cererian landscape could be indicative of ices or some mineral compound that was formed by the presence of water.

There have been many studies into Occator’s icy center, but new research into the crater’s age compared to the bright spot’s age appears to, once again, point to a cryovolcanic origin.

Cryovolcanoes — or, simply, ice volcanoes — are hypothetical features that are believed to be common throughout the outer solar system. These ice volcanoes are thought to erupt in a similar fashion to the volcanoes we have on Earth, but instead of molten rock, these volcanoes erupt ice-cold volatiles — like water, methane or ammonia. Dwarf planet Pluto, for example, has features that look like cryovolcanoes, as does Saturn’s moon Titan and Jupiter’s moon Ganymede. These locations are extremely cold and known to contain large quantities of methane and water, so internal heating (caused by radioactive decay or tidal processes) melt the ices and force them to the surface. When they vent through the crust, gases are released and the liquids quickly freeze and sublimate.

Around these vents, cryovolcanoes will grow, and if Ceres really does have its own ice volcanoes, this will be the closest planetary body to the sun (and Earth) known to have them.

Now, in research headed by the Max Planck Institute for Solar System Research (MPS) in Göttingen, Germany, scientists using Dawn data have, for the first time, taken a stab at dating the age of the bright material in the center of Occator Crater and realized that the location has likely been the site of many cryovolcanic eruptions in the recent past.

Occator Crater as observed by NASA’s Dawn spacecraft (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

In the center of Occator, a pit measuring around 7 miles wide can be found, likely formed during the massive impact approximately 30 million years ago. But around the edges of that pit are mountains, some 750 meters high, and in the center is a cracked dome measuring 400 meters high and nearly 2 miles wide. This bright dome is called Cerealia Facula and surrounding it appears to be material that was spewed from a cryovolcanic vent. Analysis has shown that this material contains salts that were formed in the presence of water from Ceres’ interior and then deposited onto the surface. The minerals around Cerealia Facula has been dated to only four million years, meaning that there has been cryovolcanic eruptions long after the Occator impact punctured Ceres’ crust.

“The age and appearance of the material surrounding the bright dome indicate that Cerealia Facula was formed by a recurring, eruptive process, which also hurled material into more outward regions of the central pit,” said Andreas Nathues, lead investigator of Dawn’s Framing Camera. “A single eruptive event is rather unlikely.” As noted in an MPS news release, Jupiter moons Callisto and Ganymede have similar features that are also believed to be related to cryovolcanic eruptions.

“The large impact that tore the giant Occator crater into the surface of the dwarf planet must have originally started everything and triggered the later cryovolcanic activity,” added Nathues.

Previous imagery of haze inside Occator Crater has led to the suspicion that ices remain on the surface today; the haze could be vapor from sublimating water ice exposed on the surface having been forced to the surface from Ceres’ interior. Evidence for this haze has been supported by other studies and appears to vary throughout the day as one would expect — increased sunlight would accelerate sublimation (ice turning from a solid to a vapor without passing through the liquid phase).

If volatiles are still being extruded through this vent today, this would seem to indicate that, in addition to the cryovolcanic eruptions in the last four million years, some form of activity continues to this day. Add this to the recent discovery of organic material on Ceres’ surface, this small world has become a very big asset for planetary science.

For more on Ceres’ icy eruptions, check out one of my last DNews videos:

The White House Approves NASA’s ‘James Bond’ Asteroid Bagging Mission

Screengrab from the NASA "Asteroid Retrieval and Utilization Mission" animation (NASA LaRC/JSC)
Screengrab from the NASA “Asteroid Retrieval and Utilization Mission” animation (NASA LaRC/JSC)

It’s been a looooong time since I last updated Astroengine.com, so first off, apologies for that. But today seems as good a time as any to crank up the ‘engine’s servers as the White House has rubber-stamped a manned NASA mission to an asteroid! However, this isn’t what the President originally had in mind in 2009 when he mandated the US space agency with the task of getting astronauts to an asteroid by the mid-2020’s.

In a twist, it turns out that NASA will be basing their manned asteroid jaunt on a 2011 Keck Institute study. To cut a long story short (you can read the long story in my Discovery News article on the topic: “NASA to Hunt Down and Capture an Asteroid“), NASA will launch an unmanned spacecraft to hunt down a small space rock specimen, “lasso” it (although “bagging” it would be more accurate) and drag the wild asteroid to park it at the Earth-moon Lagrangian point, L2. Then we can treat it like a fast food store; we can fly to and from, chipping off pieces of space rock, return samples to Earth and do, well, SCIENCE!

Great? Great.

Overall, this robotic capture/manned exoplration of an asteroid saves cash and “optimizes” the science that can be done. It also lowers the risk associated with a long-duration mission into deep space. By snaring an asteroid in its natural habitat and dragging it back to the Earth-moon system, we avoid astronauts having to spend months in deep space. The EML2 point is only days away.

But when watching the exciting NASA video after the news broke today, I kept thinking…

asteroid-grab2

But that wasn’t the only thing I was thinking. I was also thinking: what’s the point? It’s flashy and patriotic, but where’s the meat?

The human component of this asteroid mission has now been demoted to second fiddle. Sure, it will utilize NASA’s brand new Orion spacecraft and be one of the first launches of the Space Launch System (SLS), but what will it achieve? Astronauts will fly beyond Moon orbit, dock with the stationary space rock and retrieve samples as they please, but why bother with astronauts at all?

It is hoped that the robotic asteroid bagging spacecraft could launch by 2017 and, assuming a few years to steer the asteroid to EML2, a human mission would almost certainly be ready by the mid-2020s. But by that time, sufficiently advanced robotics would be available for unmanned sample retrieval. Heck, as telepresence technology matures, the EML2 point will be well within the scope for a live feed — light-time between Earth and the EML2 point will only be a few seconds, perhaps a little more if communications need to be relayed around the Moon. Robotics could be controlled live by a “virtual astronaut” on Earth — we probably have this capability right now.

The most exciting thing for me is the robotic component of asteroid capture. The advances in asteroid rendezvous and trajectory modification techniques will be cool, although scaling the asteroid bagging technique up (for large asteroids that could actually cause damage should they hit Earth) would be a challenge (to put it mildly). At a push, it may even be of use to a theoretical future asteroid mining industry. The rationale is that if we can understand the composition of a small asteroid, we can hope to learn more about its larger cousins.

The human element seems to be an afterthought and purely a political objective. There will undoubtedly be advancements in life support and docking technologies, but it will only be a mild taster for the far grander (original) NASA plan to send a team of astronauts into deep space to study an asteroid far away from the Earth-Moon system. The argument will be “an asteroid is a stepping stone to Mars” — sadly, by watering down the human element in an already questionable asteroid mission, it’s hard to see the next step for a long-duration spaceflight to Mars.

From this logic, we may as well just keep sending robots. But that wasn’t the point, was it?

Take a look at the video and decide for yourself:

Hayabusa Re-Entry Video: Spacecraft Destruction at its Best

There’s not a lot to add to this video, it’s too awesome.

It was captured by NASA’s converted DC-8 jet that was flying over Australia when the Japanese Hayabusa spacecraft broke up during re-entry. I’ll let the video do the rest of the talking:

Oh yes, and that little dot ahead of the falling debris? That’s the sample return capsule before it was found int he Outback safely. Thank goodness its parachute worked (presumably).

For more spacecraft demolition awesomeness, read “NASA Aircraft Videos Hayabusa Re-Entry

Hayabusa Returns to Earth with a Flash

Hayabusa re-enters over the Australian Outback, generating a bright fireball (screen grabs from the JAXA video feed)

Staring hard at the live streaming video of the black Australian skies, I was hoping to see a faint streak of light glide across the camera’s field of view.

But no, it wasn’t that subtle.

Shortly after 9:51 am EDT on Sunday morning (or, for me, a far more civilized 2:51 pm GMT), the Japanese space agency’s (JAXA) Hayabusa’s mission officially came to an end, burning up in the atmosphere. However, a few hours before, the spacecraft released a 40 cm-wide capsule, sending it ahead of the main spacecraft. This sample return capsule would have a very different re-entry than its mothership.

As I watched the small dot of light on the horizon of the streaming video getting brighter and brighter — feverishly hitting the PRTSC button and using some rapid cut&paste-fu in Photoshop — suddenly it erupted, shedding light on the distant clouds that had been invisible in the night.

Far from the re-entry being a faint or dull event, it was dazzling (as seen in the screen grabs to the right).

So, after seven dramatic years in space, the Hayabusa mission has come to an end.

For the full story about how Hayabusa got hit by the largest solar flare in history, limped to visit an asteroid called Itokawa and how its sample-collecting kit malfunctioned, have a read of my main article on Discovery News: Hayabusa Generates Re-Entry Fireball Over Australia

Note: Thanks to everyone who re-tweeted the sequence of re-entry pics. As of this moment it has received over 30,000 views on Twitpic!

Jupiter Got Smacked, Again

Quite frankly, I’m stunned.

An Australian amateur astronomer has just observed his second ‘once-in-a-lifetime’ event: an impact in the atmosphere of Jupiter. Phil Plait was very quick to get the news out, describing it as a “major coincidence,” and he ain’t wrong!

Anthony Wesley’s first event was the famous July 2009 observation of what was thought to have been the immediate aftermath of a comet impact in the Jovian atmosphere. His second happened on Thursday at 20:31 UTC when he was observing Jupiter when something hit the atmosphere, generating a huge fireball.

It is not known whether this event was caused by a comet or asteroid, but in a bizarre case of serendipity, earlier on Thursday Hubble released more information on his original impact event. The July 2009 “bruise” in the gas giant’s atmosphere is now thought to have been caused by an asteroid, and not a comet.

The Hubble press release included details on how researchers deduced that it was actually more likely that a 500 meter-wide asteroid hit Jupiter in 2009. One clue was that newly installed cameras on the space telescope detected little dust in the halo surrounding the impact site — a characteristic that was detected after the impact of the shards of comet Shoemaker-Levy 9 in July 1994. Also, the calculated trajectory of the 2009 event indicated the object didn’t have an orbit commonly associated with comets. If the 2009 event was an asteroid, that means Wesley saw something never seen before: the site of a recent asteroid impact on a celestial body.

And now, less than a year after being the first to see that impact aftermath, Wesley has done it again. Another amateur astronomer, Christopher Go, was quick to confirm Thursday’s fireball with a video of the 2 second flash in Jupiter’s upper atmosphere.

These impact events serve as a reminder about Jupiter’s fortuitous role in our Solar System. As the gas giant is so massive, its gravitational pull has a huge influence over the outer planets, dwarf planets, comets and asteroids. Acting like an interplanetary ‘vacuum cleaner’ Jupiter can block potentially disastrous chunks of stuff from taking a dive into the inner Solar System. It is thought that this distant planet has helped Earth become the thriving world it is today, preventing many asteroids and comets from ruining our evolution.

Thank you Jupiter!