Heavy Stellar Traffic Sends Dangerous Comets Our Way

New image of comet ISON
Comet C/2012 S1 (ISON) as imaged by TRAPPIST–South national telescope at ESO’s La Silla Observatory in 2013 (TRAPPIST/E. Jehin/ESO)

Sixty-six million years ago Earth underwent a cataclysmic change. Back then, our planet was dominated by dinosaurs, but a mass extinction event hastened the demise of these huge reptiles and paved the way for the mammalian takeover. Though there is some debate as to whether the extinction of the dinosaurs was triggered by an isolated disaster or a series of disasters, one event is clear — Earth was hit by a massive comet or asteroid and its impact had global ramifications.

The leading theory is that a massive comet slammed into our planet, creating the vast Chicxulub Crater buried under the Yucatán Peninsula in Mexico, enshrouding the atmosphere in fine debris, blotting out the sun for years.

Although there is strong evidence of comet impacts on Earth, these deep space vagabonds are notoriously hard to track, let alone predict when or how often they may appear. All we know is that they are out there, there are more than we thought, they are known to hit planets in the solar system and they can wreak damage of apocalyptic proportions.

Now, using fresh observations from the European Space Agency’s Gaia mission, astronomer Coryn Bailer-Jones, who works at the Max Planck Institute for Astronomy in Munich, Germany, has added an interesting component to our understanding of cometary behavior.

Stellar Traffic

Long-period comets are the most mysterious — and troubling — class of comet. They will often appear from nowhere, after falling from their distant gravitational perches, zoom through the inner solar system and disappear once more — often to be never seen again. Or they hit something on their way through. These icy bodies are the pristine left-overs of our solar system’s formation five billion years ago, hurled far beyond the orbits of the planets and into a region called the Oort Cloud.

In the Oort Cloud these ancient masses have remained in relative calm far from the gravitational instabilities close to the sun. But over the eons, countless close approaches by other stars in our galactic neighborhood have occurred, causing very slight gravitational nudges to the Oort Cloud. Astronomers believe that such stellar encounters are responsible for knocking comets from this region, sending them on a roller-coaster ride to the inner solar system.

The Gaia mission is a space telescope tasked with precisely mapping the distribution and motion of stars in our galaxy, so Bailer-Jones has investigated the rate of stellar encounters with our solar system. Using information in Gaia’s first data release (DR1), Bailer-Jones has published the first systematic estimate of stellar encounters — in other words, he’s estimated the flow of stellar traffic in the solar system’s neighborhood. And the traffic was found to be surprisingly heavy.

In his study, to be published in the journal Astronomy & Astrophysics, Bailer-Jones estimates that, on average, between 490 and 600 stars will come within 16.3 light-years (5 parsecs) of our sun and 19-24 of them will come within 3.26 light-years (1 parsec) every million years.

According to a press release, all of these stars will have some gravitational effect on the solar system’s Oort Cloud, though the closest encounters will have a greater influence.

This first Gaia data release is valid for five million years into the past and into the future, but astronomers hope the next data release (DR2) will be able to estimate stellar traffic up to 25 million years into the past and future. To begin studying the stellar traffic that may have been responsible for destabilizing the dinosaur-killing comet that hit Earth 66 million years ago will require a better understanding of the mass distribution of our galaxy (and how it influences the motion of stars) — a long-term goal of the Gaia project.

An Early Warning?

Spinning this idea into the future, could this project be used to act as an early warning system? Or could it be used to predict when and where a long-period comet may appear in the sky?

In short: “No,” Bailer-Jones told Astroengine via email. “Some close stellar encounters will for sure shake up the Oort cloud and fling comets into the inner solar system, but which comets on which orbits get flung in we cannot observe.”

He argues that the probability of comets being gravitationally nudged can be modeled statistically, but this would require a lot of assumptions to be made about the Oort Cloud, a region of space that we know very little about.

Also, the Oort Cloud is located well beyond the sun’s heliosphere and is thought to be between 50,000 and 200,000 AU (astronomical units, where 1 AU is the average distance between the sun and the Earth) away, so it would take a long time for comets to travel from this region, creating a long lag-time between stellar close approach and the comet making an appearance.

“Typically it takes a few million years for a comet to reach the inner solar system,” he added, also pointing out that other factors can complicate calculations, such as Jupiter’s enormous gravity that can deflect the passage of comets, or even fling them back out of the solar system again.

This is a fascinating study that goes to show that gravitational perturbations in the Oort Cloud are far from being rare events. A surprisingly strong flow of stellar traffic will constantly rattle otherwise inert comets, but how many are dislodged and sent on the long journey to the solar system’s core remains a matter for statistics and probability.


Great Balls of ‘Space Mud’ May Have Built Earth and Delivered Life’s Ingredients

Artist’s impression of the molten surface of early Earth (NASA)

When imagining how our planet formed 4.6 billion years ago from the protoplanetary disk surrounding our sun, images of large pieces of marauding space rock slamming into the molten surface of our proto-Earth likely come to mind.

But this conventional model of planetary creation may be missing a small, yet significant, detail. Those massive space rocks may not have been the conventional solid asteroids — they might have been massive balls of space mud.

This strange detail of planetary evolution is described in a new study published in the American Association for the Advancement of Science (AAAS) journal Science Advances and it kinda makes logical sense.

Using the wonderfully-named Mars and Asteroids Global Hydrology Numerical Model (or “MAGHNUM”), planetary scientists Phil Bland (Cornell University) and Bryan Travis (Planetary Science Institute) simulated the movement of material inside primordial carbonaceous chondrite asteroids — i.e. the earliest asteroids that formed from the sun’s protoplanetary disk that eventually went on to become the building blocks for Earth.

A simulated cross section of a 200-meter wide asteroid showing its internal temperature profile and convection currents (temperatures in Celsius). Credit: PSI

It turns out that these first asteroids weren’t cold and solid lumps of rock at all. By simulating the distribution of rock grains inside these asteroids, the researchers realized that the internal heat of the objects would have melted the icy volatiles inside, which then mixed with the fine dust particles. Convection would have then dominated a large portion of these asteroids, causing continuous mixing of water and dust. Like a child squishing a puddle of dirt to create sloppy “mud pies,” this convection would have formed a ball of, you guessed it, space mud.

Travis points out that “these bodies would have accreted as a high-porosity aggregate of igneous clasts and fine-grained primordial dust, with ice filling much of the pore space. Mud would have formed when the ice melted from heat released from decay of radioactive isotopes, and the resulting water mixed with fine-grained dust.”

In other words: balls of mud held together by mutual gravity, gently convected by the heat produced by the natural decay of radioactive materials.

Should this model hold up to further scrutiny, it has obvious implications for the genesis of life on Earth and could impact the study of exoplanets and their habitable potential. The ingredients for life on Earth originated in the primordial protoplanetary soup, but until now the assumption has been that the space rocks carrying water and other chemicals were solid and frozen. If they were in fact churning away in space as dynamic mud asteroids, they could have been the “pressure cookers” that delivered those ingredients to Earth’s surface.

So the next question would be: how did these exotic asteroids shape life on Earth?

MU69: New Horizons’ Next Kuiper Belt Target Is One Big Mystery

Not as advertised? 2014 MU69 could be one big Kuiper Belt mess (NASA/JHU-APL/SwRI/Steve Gribben)

“All bound for Mu Mu Land” — The KLF, ‘Justified and Ancient’ (seems appropriate)

After visiting Pluto on July 14, 2015, NASA’s epic New Horizons mission soared into the great unknown, a.k.a. the Kuiper Belt. This strange region, which extends beyond Pluto’s orbit, is known to be populated with dwarf planets, comets, asteroids and junk that was left behind after the solar system’s formation, five billion years ago.

In an effort to better understand the solar system’s boondocks, New Horizons is on a trajectory that will create a second flyby opportunity. On New Year’s Day 2019, the spacecraft will buzz a mysterious object called 2014 MU69. But although we know this Kuiper Belt Object is out there, astronomers aren’t entirely sure what it is. And that’s a bit of a problem.

For two seconds on June 3, astronomers were presented with an opportunity to better observe MU69, but instead of clearing up its mystery the occultation event has created more questions than answers.

An occultation is when an object, like a distant asteroid, drifts in front of a background star. If astronomers time it perfectly, they can observe the star at the time of occultation in a bid to image the tiny shadow that will rapidly speed across our planet. And in the case of the June 3 event, dozens of mission team members and collaborators were ready and waiting along the predicted shadow track in South Africa and Argentina. In all, 100,000 images were taken of the star during the rapid occultation.

What they saw — or, indeed, didn’t see — is a bit of a conundrum.

“These data show that MU69 might not be as dark or as large as some expected,” said Marc Buie, a New Horizons science team member and occultation team leader from Southwest Research Institute (SwRI) in Boulder, Colo., in a statement.

Observations by the Hubble Space Telescope had previously estimated that MU69 is between 12- to 25-miles wide. That might be a pretty big overestimation by all accounts. And it may not be a single object at all.

“These results are telling us something really interesting,” said Alan Stern, New Horizons Principal Investigator also of SwRI. “The fact that we accomplished the occultation observations from every planned observing site but didn’t detect the object itself likely means that either MU69 is highly reflective and smaller than some expected, or it may be a binary or even a swarm of smaller bodies left from the time when the planets in our solar system formed.”

If it’s the latter, this could pose a problem for New Horizons.

Before the mission encountered Pluto in 2015, there was concern that the dwarf planet’s neighborhood might have been filled with debris. This concern was heightened after Pluto’s moons Styx and Kerberos were revealed by Hubble in 2011, only four years before New Horizons was set to barrel through the system. If there were more sub-resolution chunks near Pluto, they would have been regarded as collision risks.

Although New Horizons survived the Pluto encounter, if MU69 is a swarm of debris and not a solid object, mission scientists will have to assess the impact risk once again when New Horizons attempts its second flyby in 2019.

More occultations are forecast for July 10 and July 17, and NASA will also be flying its airborne observatory SOFIA through the occultation path on July 10 in hopes of better resolving MU69’s true nature.

So, as New Horizons speeds toward MU69, one of the most ancient objects in our sun’s domain, mystery and potential danger awaits.

Can We Call the Bright Spot in Ceres’ Occator Crater a Cryovolcano Yet?

Evidence is mounting around the cryovolcanic history of the solar system’s innermost dwarf planet — and its most recent eruptions may have happened within the last four million years.


Since NASA’s Dawn mission arrived at dwarf planet Ceres in 2015, we’ve been treated to some wonderfully detailed images of the small world’s pockmarked terrain. Understanding the underlying processes of what is believed to be an ice-filled celestial body, however, is taking some time to decipher. But with more observations comes more understanding and planetary scientists are getting close to realizing what lies beneath those craters and, possibly, unlocking the secrets behind a very icy and very alien phenomenon we have no experience of in our terrestrial lives.

That phenomenon is cryovolcanoes. And Ceres seems to have them.

The most startling feature on Ceres is Occator Crater. This 57 mile-wide feature is the result of a massive impact tens of millions of years ago. Large craters on small worlds isn’t necessarily a strange thing in our battered solar system, but what is strange about Occator is the very bright feature (and small bright patches surrounding it) in the crater’s center. Even before Dawn arrived in orbit and only fuzzy images of Ceres were available, hopes were high that this bright anomaly in the otherwise gray Cererian landscape could be indicative of ices or some mineral compound that was formed by the presence of water.

There have been many studies into Occator’s icy center, but new research into the crater’s age compared to the bright spot’s age appears to, once again, point to a cryovolcanic origin.

Cryovolcanoes — or, simply, ice volcanoes — are hypothetical features that are believed to be common throughout the outer solar system. These ice volcanoes are thought to erupt in a similar fashion to the volcanoes we have on Earth, but instead of molten rock, these volcanoes erupt ice-cold volatiles — like water, methane or ammonia. Dwarf planet Pluto, for example, has features that look like cryovolcanoes, as does Saturn’s moon Titan and Jupiter’s moon Ganymede. These locations are extremely cold and known to contain large quantities of methane and water, so internal heating (caused by radioactive decay or tidal processes) melt the ices and force them to the surface. When they vent through the crust, gases are released and the liquids quickly freeze and sublimate.

Around these vents, cryovolcanoes will grow, and if Ceres really does have its own ice volcanoes, this will be the closest planetary body to the sun (and Earth) known to have them.

Now, in research headed by the Max Planck Institute for Solar System Research (MPS) in Göttingen, Germany, scientists using Dawn data have, for the first time, taken a stab at dating the age of the bright material in the center of Occator Crater and realized that the location has likely been the site of many cryovolcanic eruptions in the recent past.

Occator Crater as observed by NASA’s Dawn spacecraft (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

In the center of Occator, a pit measuring around 7 miles wide can be found, likely formed during the massive impact approximately 30 million years ago. But around the edges of that pit are mountains, some 750 meters high, and in the center is a cracked dome measuring 400 meters high and nearly 2 miles wide. This bright dome is called Cerealia Facula and surrounding it appears to be material that was spewed from a cryovolcanic vent. Analysis has shown that this material contains salts that were formed in the presence of water from Ceres’ interior and then deposited onto the surface. The minerals around Cerealia Facula has been dated to only four million years, meaning that there has been cryovolcanic eruptions long after the Occator impact punctured Ceres’ crust.

“The age and appearance of the material surrounding the bright dome indicate that Cerealia Facula was formed by a recurring, eruptive process, which also hurled material into more outward regions of the central pit,” said Andreas Nathues, lead investigator of Dawn’s Framing Camera. “A single eruptive event is rather unlikely.” As noted in an MPS news release, Jupiter moons Callisto and Ganymede have similar features that are also believed to be related to cryovolcanic eruptions.

“The large impact that tore the giant Occator crater into the surface of the dwarf planet must have originally started everything and triggered the later cryovolcanic activity,” added Nathues.

Previous imagery of haze inside Occator Crater has led to the suspicion that ices remain on the surface today; the haze could be vapor from sublimating water ice exposed on the surface having been forced to the surface from Ceres’ interior. Evidence for this haze has been supported by other studies and appears to vary throughout the day as one would expect — increased sunlight would accelerate sublimation (ice turning from a solid to a vapor without passing through the liquid phase).

If volatiles are still being extruded through this vent today, this would seem to indicate that, in addition to the cryovolcanic eruptions in the last four million years, some form of activity continues to this day. Add this to the recent discovery of organic material on Ceres’ surface, this small world has become a very big asset for planetary science.

For more on Ceres’ icy eruptions, check out one of my last DNews videos:

The White House Approves NASA’s ‘James Bond’ Asteroid Bagging Mission

Screengrab from the NASA "Asteroid Retrieval and Utilization Mission" animation (NASA LaRC/JSC)
Screengrab from the NASA “Asteroid Retrieval and Utilization Mission” animation (NASA LaRC/JSC)

It’s been a looooong time since I last updated Astroengine.com, so first off, apologies for that. But today seems as good a time as any to crank up the ‘engine’s servers as the White House has rubber-stamped a manned NASA mission to an asteroid! However, this isn’t what the President originally had in mind in 2009 when he mandated the US space agency with the task of getting astronauts to an asteroid by the mid-2020’s.

In a twist, it turns out that NASA will be basing their manned asteroid jaunt on a 2011 Keck Institute study. To cut a long story short (you can read the long story in my Discovery News article on the topic: “NASA to Hunt Down and Capture an Asteroid“), NASA will launch an unmanned spacecraft to hunt down a small space rock specimen, “lasso” it (although “bagging” it would be more accurate) and drag the wild asteroid to park it at the Earth-moon Lagrangian point, L2. Then we can treat it like a fast food store; we can fly to and from, chipping off pieces of space rock, return samples to Earth and do, well, SCIENCE!

Great? Great.

Overall, this robotic capture/manned exoplration of an asteroid saves cash and “optimizes” the science that can be done. It also lowers the risk associated with a long-duration mission into deep space. By snaring an asteroid in its natural habitat and dragging it back to the Earth-moon system, we avoid astronauts having to spend months in deep space. The EML2 point is only days away.

But when watching the exciting NASA video after the news broke today, I kept thinking…


But that wasn’t the only thing I was thinking. I was also thinking: what’s the point? It’s flashy and patriotic, but where’s the meat?

The human component of this asteroid mission has now been demoted to second fiddle. Sure, it will utilize NASA’s brand new Orion spacecraft and be one of the first launches of the Space Launch System (SLS), but what will it achieve? Astronauts will fly beyond Moon orbit, dock with the stationary space rock and retrieve samples as they please, but why bother with astronauts at all?

It is hoped that the robotic asteroid bagging spacecraft could launch by 2017 and, assuming a few years to steer the asteroid to EML2, a human mission would almost certainly be ready by the mid-2020s. But by that time, sufficiently advanced robotics would be available for unmanned sample retrieval. Heck, as telepresence technology matures, the EML2 point will be well within the scope for a live feed — light-time between Earth and the EML2 point will only be a few seconds, perhaps a little more if communications need to be relayed around the Moon. Robotics could be controlled live by a “virtual astronaut” on Earth — we probably have this capability right now.

The most exciting thing for me is the robotic component of asteroid capture. The advances in asteroid rendezvous and trajectory modification techniques will be cool, although scaling the asteroid bagging technique up (for large asteroids that could actually cause damage should they hit Earth) would be a challenge (to put it mildly). At a push, it may even be of use to a theoretical future asteroid mining industry. The rationale is that if we can understand the composition of a small asteroid, we can hope to learn more about its larger cousins.

The human element seems to be an afterthought and purely a political objective. There will undoubtedly be advancements in life support and docking technologies, but it will only be a mild taster for the far grander (original) NASA plan to send a team of astronauts into deep space to study an asteroid far away from the Earth-Moon system. The argument will be “an asteroid is a stepping stone to Mars” — sadly, by watering down the human element in an already questionable asteroid mission, it’s hard to see the next step for a long-duration spaceflight to Mars.

From this logic, we may as well just keep sending robots. But that wasn’t the point, was it?

Take a look at the video and decide for yourself:

Hayabusa Re-Entry Video: Spacecraft Destruction at its Best

There’s not a lot to add to this video, it’s too awesome.

It was captured by NASA’s converted DC-8 jet that was flying over Australia when the Japanese Hayabusa spacecraft broke up during re-entry. I’ll let the video do the rest of the talking:

Oh yes, and that little dot ahead of the falling debris? That’s the sample return capsule before it was found int he Outback safely. Thank goodness its parachute worked (presumably).

For more spacecraft demolition awesomeness, read “NASA Aircraft Videos Hayabusa Re-Entry

Hayabusa Returns to Earth with a Flash

Hayabusa re-enters over the Australian Outback, generating a bright fireball (screen grabs from the JAXA video feed)

Staring hard at the live streaming video of the black Australian skies, I was hoping to see a faint streak of light glide across the camera’s field of view.

But no, it wasn’t that subtle.

Shortly after 9:51 am EDT on Sunday morning (or, for me, a far more civilized 2:51 pm GMT), the Japanese space agency’s (JAXA) Hayabusa’s mission officially came to an end, burning up in the atmosphere. However, a few hours before, the spacecraft released a 40 cm-wide capsule, sending it ahead of the main spacecraft. This sample return capsule would have a very different re-entry than its mothership.

As I watched the small dot of light on the horizon of the streaming video getting brighter and brighter — feverishly hitting the PRTSC button and using some rapid cut&paste-fu in Photoshop — suddenly it erupted, shedding light on the distant clouds that had been invisible in the night.

Far from the re-entry being a faint or dull event, it was dazzling (as seen in the screen grabs to the right).

So, after seven dramatic years in space, the Hayabusa mission has come to an end.

For the full story about how Hayabusa got hit by the largest solar flare in history, limped to visit an asteroid called Itokawa and how its sample-collecting kit malfunctioned, have a read of my main article on Discovery News: Hayabusa Generates Re-Entry Fireball Over Australia

Note: Thanks to everyone who re-tweeted the sequence of re-entry pics. As of this moment it has received over 30,000 views on Twitpic!

Jupiter Got Smacked, Again

Quite frankly, I’m stunned.

An Australian amateur astronomer has just observed his second ‘once-in-a-lifetime’ event: an impact in the atmosphere of Jupiter. Phil Plait was very quick to get the news out, describing it as a “major coincidence,” and he ain’t wrong!

Anthony Wesley’s first event was the famous July 2009 observation of what was thought to have been the immediate aftermath of a comet impact in the Jovian atmosphere. His second happened on Thursday at 20:31 UTC when he was observing Jupiter when something hit the atmosphere, generating a huge fireball.

It is not known whether this event was caused by a comet or asteroid, but in a bizarre case of serendipity, earlier on Thursday Hubble released more information on his original impact event. The July 2009 “bruise” in the gas giant’s atmosphere is now thought to have been caused by an asteroid, and not a comet.

The Hubble press release included details on how researchers deduced that it was actually more likely that a 500 meter-wide asteroid hit Jupiter in 2009. One clue was that newly installed cameras on the space telescope detected little dust in the halo surrounding the impact site — a characteristic that was detected after the impact of the shards of comet Shoemaker-Levy 9 in July 1994. Also, the calculated trajectory of the 2009 event indicated the object didn’t have an orbit commonly associated with comets. If the 2009 event was an asteroid, that means Wesley saw something never seen before: the site of a recent asteroid impact on a celestial body.

And now, less than a year after being the first to see that impact aftermath, Wesley has done it again. Another amateur astronomer, Christopher Go, was quick to confirm Thursday’s fireball with a video of the 2 second flash in Jupiter’s upper atmosphere.

These impact events serve as a reminder about Jupiter’s fortuitous role in our Solar System. As the gas giant is so massive, its gravitational pull has a huge influence over the outer planets, dwarf planets, comets and asteroids. Acting like an interplanetary ‘vacuum cleaner’ Jupiter can block potentially disastrous chunks of stuff from taking a dive into the inner Solar System. It is thought that this distant planet has helped Earth become the thriving world it is today, preventing many asteroids and comets from ruining our evolution.

Thank you Jupiter!

Gecksteroids! Asteroids and Geckos May Share Common Force

The asteroid Itokawa (as imaged by the Japanese Hayabusa probe) and a gecko tattoo. Bear with me, it'll make sense soon (JAXA)
The asteroid Itokawa (as imaged by the Japanese Hayabusa probe) and a gecko tattoo. Bear with me, it'll make sense soon (JAXA)

What do asteroids and geckos have in common? Not a lot, as you’d expect, but they may share a common force.

This rather strange notion comes from research being done by a team of University of Colorado scientists who have been studying the odd nature of the asteroid Itokawa. When the Japanese Hayabusa mission visited the space rock in 2005 (Hayabusa’s sample return capsule is set to return to Earth on June 13th by the way), it noticed the asteroid was composed of smaller bits of rubble, rather than one solid chunk. Although this isn’t a surprise in itself — indeed, many asteroids are believed to be floating “rubble piles” — the rate of spin of the asteroid posed a problem.

Itokawa spins rather fast and if only the force of gravity was keeping the lumps of rock together, they would have been flung out into space long ago. In short, the asteroid shouldn’t exist.

Although plenty of theories have been bandied around, one idea seems to stick.

More commonly found as a force that holds molecules together, the van der Waals force may bind the individual components of the asteroid together, acting against the centripetal force caused by its spin.

But where do the geckos come in?

Geckos are highly skilled in the “climbing up walls” department, and it’s the van der Waals force that makes this happen. Should the body of a gecko be tilted in such a way against a perfectly smooth, “impossible” to climb surface, the gravity acting on the little creature will trigger the force into action. Therefore geckos have evolved to exploit the practical application of van der Waals.

This has some rather interesting ramifications for asteroid evolution too. During early stages of asteroid formation, the larger fragments of rock are flung off; the centripetal force exceeds that of gravity. In the latter stages of development, only the smallest rocks remain behind, their mass small enough to allow van der Waals forces to overcome the spin.

So, there you have it, asteroids do have something in common with geckos. It seems only right to call these space rubble piles “Gecksteroids.”

Thanks to my Discovery News colleague Jennifer Ouellette for drawing the comparison between asteroids and geckos!

Source: Discovery News, arXiv.org

NASA’s Asteroid Mission: Scary but Useful

Things have been moving fast for NASA in recent weeks, culminating in President Obama’s inspiring speech at Kennedy Space Center on Thursday. I haven’t commented on the new direction for the US space agency’s direction thus far as I’ve needed some time to digest the ramifications of these plans. But generally, I’m positive about the scrapping of the moon goal in favor of a manned asteroid mission (by 2025) and Mars some time around 2035.

But it hasn’t been easy, especially after the Ares I-X test launch in October 2009.

The Ares I-X was the first new NASA manned vehicle my generation has seen take to the skies (I was only one year old when the first of the shuttle fleet launched, beginning nearly 30 years of low-Earth orbit operations, so that doesn’t count). Despite criticism that this test flight was nothing more than old tech dressed up as a sleek “new” rocket, I was thrilled to see it launch.

The end product didn’t matter on that day. Sure, we’ve been to the Moon before, but it just seemed like the best plan on the table. I was inspired, I felt excited about our future in space. Seeing how astronauts live and work on the lunar surface, using it as a stepping stone for further planetary exploration (i.e. Mars) seemed… sensible. Expensive, but sensible

But the overriding sentiment behind Obama’s new plans was that we’ve been there before, why waste billions on going back? Continuing with the bloated Constellation Program would have used up funds it didn’t have. Cost overruns and missed deadlines were already compiling.

So, the White House took on the recommendations of experts and decided to go for something far riskier than a “simple” moon hop. Things going to plan and on schedule, in the year 2025 we’ll see a team of astronauts launch for a much smaller and far more distant target than the moon.

The asteroid plan has many benefits, the key being that we need to study these potentially devastating chunks of rock up close. Should one be heading in the direction of Earth, it would be really nice to have the technological ability to deal with it. A manned mission may be necessary to send to a hazardous near-Earth asteroid. Think Armageddon but with less nukes, no Bruce Willis, but more science and planning. Besides, if a rock the size of a city is out there, heading right at us, I’m hopeful we’ll have more than 18 days to deal with the thing.

My Discovery News colleague Ray Villard agrees:

“A several month-long human round trip to an asteroid will test the sea legs of astronauts for interplanetary journeys. And, asteroids are something we have to take very seriously in coming up with an Earth defense strategy, so that we don’t wind up going extinct like the dinosaurs.”

Possibly even more exciting than the asteroid plan is what — according to Obama — will happen ten years after that: a manned mission to Mars. I can’t overemphasize my enthusiasm for a mission to the Red Planet; that will be a leap for mankind like no other. Granted, there is plenty of criticism flying around that we need to live on the moon first before we attempt to land on Mars, but looking at the new plan, we won’t be actually landing on Mars any time soon. A 2030’s mission to Mars will most likely be a flyby, or if we’re really lucky, an orbital manned mission.

And that’s why going to an asteroid will be a good first step. Spending months cramped inside a spaceship with a handful of crewmates will likely be one of the biggest challenges facing man in space, so popping over to a near-Earth asteroid first is a good idea. A Mars trip could take over a year (depending on the mission). Now, this is where technological development sure would help.

If NASA can plough dedicated funds into new technologies, new life support and propulsion systems can be developed. Those two things will really help astronauts get places quicker (avoiding boredom) and live longer (avoiding… death). For the “living longer” part, there appears to be genuine drive to increase the life of the space station and do more impressive science on it. As it’s our only manned outpost, perhaps we’ll be able to use it for what it’s designed for.

There are a lot of unknowns still, and Obama’s Thursday speech certainly wasn’t NASA’s silver bullet, but it’s a start. Allocating serious funding for space technology development whilst setting the space program’s sights on going where no human has been before will surely boost enthusiasm for space exploration. In fact, I’d argue that this is exactly what NASA should be doing.

Although I was dazzled by the Ares I-X, I can see that continuing with Constellation would have been a flawed decision. Launching a manned mission to explore an interplanetary threat sounds risky, but considering that asteroids are the single biggest cosmic threat to civilization, it sure would be useful to know we have the technology to send astronauts to asteroids, perhaps even dealing with a potential threat in the near future.