Teegarden Party: Don’t Pack Your Interstellar Travel Bags … Yet

While it’s an exciting discovery, the nearby star system is a very alien place with its own unique array of challenges.

The universe is stranger than we can imagine, so when a star system is discovered with some familiar traits to ours, it can be hard not to imagine extraterrestrial lifeforms and interstellar getaways. But before you dream of bathing on the exotic shores of Teegarden b, breathing in the moist and salty air, while sipping on a Teegarden Tequila Sunrise, keep in mind that the reality will likely be, well, much stranger than we can imagine.

This is how the star Teegarden might look at sunset on its two “habitable” exoplanets, Teegarden b and c [PHL @ UPR Arecibo]

So, what is all the fuss about Teegarden’s Star?

This week, astronomers announced the discovery of two “habitable zone” exoplanets orbiting the tiny red dwarf star, which is located a mere interstellar stone’s throw away. While 12.5 light-years may sound like quite the trek, in galactic distances, that’s no distance at all. The two exoplanets, Teegarden b and c, are now in a very exclusive club, being the joint fourth-nearest habitable zone exoplanets to Earth (after Proxima Centauri b, Tau Ceti b and GJ 273 b). On the Earth Similarity Index (ESI), however, we have a new champion: Teegarden b—after considering its mass and derived surface temperature—this fascinating world is 95% “Earth-similar,” according to Abel Mendez’s analysis at the Planetary Habitability Laboratory (PHL). And like TRAPPIST-1, there’s some optimism that there should be more small exoplanets, some that may also be habitable, that have yet to be discovered around Teegarden.

All of these facts are cause for celebration, no? They are, but a heavy dose of reality needs to be applied when it comes to any world that has been discovered beyond our solar system.

More Exoplanets, More Possibilities

As alien planet-hunting missions continue to add more worlds to the vast menagerie of known exoplanets that exist in our galaxy, an increasing number of them are falling inside the “habitable zone” category.

Top 19 potentially habitable exoplanets, sorted by similar size and insolation to Earth [PHL @ UPR Arecibo]

The habitable zone around any star is the distance at which a rocky planet can orbit where it’s neither too hot or too cold for liquid water to exist on its surface (if it has water, that is). Liquid water is the stuff that Earth-like biology has an affinity to; without it, life on Earth wouldn’t have evolved. So, even before we have any clue about its H2O-ness, if an exoplanet is seen to have an orbit around its star that is deemed habitable, that’s +1 point for habitability.

Now, the next point can only be won if that world is also of approximate Earth-like size and/or mass. There would be little reason in getting too excited for a Jupiter-sized exoplanet sitting in the habitable zone possessing liquid water on its “surface” (because it won’t have a surface). That’s not to say there can’t be some gas giant-dwelling balloon-like alien living in there, but we’re looking for Earth-like qualities, not awesome alien qualities we read in science fiction. (I’d also argue that these kinds of exoplanets might have habitable Earth-sized moons—like Avatar‘s Pandora—but that’s for another article…)

The two key methods for exoplanet detection is the “radial velocity” method and the “transit” method. The former—which precisely measures a star’s light to detect tiny stellar wobbles as an exoplanet gravitationally “tugs” at it as it orbits—can deduce the exoplanet’s mass, thereby revealing whether or not it has an Earth-like mass (Teegarden’s two worlds were discovered using this method). The latter—which was employed by NASA’s Kepler space telescope (and now NASA’s Transiting Exoplanet Survey Explorer, among others) to look for the slight dips in brightness as an exoplanet passes in front of its star—can deduce the exoplanet’s physical size, thereby revealing whether or not it has an Earth-like size. Should a habitable zone exoplanet possess either one of these Earth-like qualities, or both (if both methods are used on a target star), that’s another +1 point for its habitability.

The orbital characteristics of Teegarden b and c, both falling well within the star’s habitable zone [PHL @ UPR Arecibo]

There’s a few other measurements that astronomers can make that may add to a hypothetical world’s habitability (such as observations of the host star’s flaring activity, age, or some other derived measurement), but until we develop more powerful observatories on Earth and in space, there are several factors that quickly cause our hypothetical exoplanet to diminish in habitable potential.

The Unhabitability of “Habitable” Worlds

So far in our burgeoning age of exoplanetary studies, we’ve only been able to measure (and derive) a handful of characteristics—such as mass, orbital period, physical size, density—but we have very little idea about these habitable zone exoplanets’ atmospheres. Apart from measurements of a few massive and extreme exoplanets—such as “hot-Jupiters” and exoplanets getting blow-torched by their star when they venture too close—astronomers haven’t been able to directly measure the existence of any of these “habitable” exoplanet’s hypothetical atmospheres. Do they even possess atmospheres? Or are they the opposite, with hellish Venus-like pressure-cooker atmospheres? Who knows. Even if they do have atmospheres that are more Earth-like, are the gases they contain toxic to life as we know it?

Recently, theoretical models of exoplanetary atmospheres brought carbon dioxide and carbon monoxide into the discussion. CO2 is a powerful greenhouse gas that helps maintain a balance in our atmosphere, regulating a temperate world (until industrialized humans came along, that is). But too much can be a very bad thing. For exoplanets existing on the outer edge of their habitable zone to remain habitable, they’d need massive concentrations of CO2 to remain temperate—concentrations that would render the atmosphere toxic (to complex lifeforms, at least). In the case of carbon monoxide (the terrible gas that asphyxiates anything with a cardiovascular system), as our star is so hot and bright, its ultraviolet radiation destroys large accumulations of CO in Earth’s atmosphere. But for habitable zone exoplanets that orbit cool red dwarf stars (like Teegarden), huge concentrations of CO may accumulate and snuff-out life before it has the opportunity to evolve beyond a germ. These two factors are a big negative against life as we know it, shrinking the effective habitable zone around certain stars and certain exoplanetary orbits.

Artist impression of a transiting exoplanet [ESO]

Most habitable zone exoplanets have been found orbiting red dwarfs, primarily because our observations have been biased in favor of these little stars—they’re small and cool, meaning that any planet orbiting within their habitable zones need to get up-close and personal, so it’s an easier task to detect the periodic star wobbles or exoplanetary transits to confirm their existence.

While this may sound cute, orbiting so close to a red dwarf is a blessing (for astronomers) and a curse (for any unfortunate aliens). Many red dwarf stars generate powerful stellar flares that would regularly bombard nearby worlds with radiation that terrestrial biology would not be able to tolerate. Unless those planets have incredibly powerful global magnetic fields to, a) protect their inhabitants from being irradiated and, b) prevent the savage stellar winds from stripping away their protective atmospheres, there’s limited hope for the evolution of life.

Interestingly, however, according to the Teegarden study published in the journal Astronomy & Astrophysics, this particular red dwarf is relatively quiet on the life-killing flare front, so that’s something. Another tentative +1 for Teegarden’s actual habitability! (Pass the tequila.)

Known habitable zone exoplanets plotted against the type of star they orbit and distance from star. Note: all temperate worlds discovered so far orbit stars far cooler (and smaller) than the Sun [C. Harman]

As you can tell, there’s lots of exciting implications balanced by plenty of sobering reality checks. There is, however, one factor that is often missed from big announcements about worlds orbiting small stars that, whether they are habitable or not, is truly beyond our experience.

Eyeballing Temperate Red Dwarf Systems

Teegarden is an eight-billion-year-old star system, approximately twice the age of our solar system. If life has found a way, it will have come and gone, or be in an evolved state (though this is anyone’s guess, we have little idea about the hows and whys of the emergence of life on Earth, let alone on a different planet). But the worlds themselves, if either possess liquid water (Teegarden b, being the one that should be the most temperate of the pair, so will have the higher odds), they certainly wouldn’t look like Earth, even if they have Earth-like qualities.

Having settled billions of years ago, any orbital instabilities would have ebbed, and the planetary orbits would be clearly defined and likely in some kind of resonance with the other bodies in the star system. In addition, both Teegarden b and c will, in all likelihood, be tidally locked with their star.

To understand what this means, we need only look up. When we see our moon, we only see one hemisphere—the “near side”; the lunar “far side” is never in view. Except for the Apollo astronauts, no human has ever seen the moon’s far side with their own eyes. That’s because the moon’s rotation period (28 days) exactly matches its orbital period (28 days) around the Earth. Other examples of tidally-locked systems in the solar system are Pluto and its largest moon Charon, Mars and both its moons Phobos and Diemos, plus a whole host of moons orbiting Jupiter, Saturn, Uranus and Neptune.

The same tidal physics applies to red dwarf stars and their closely-orbiting worlds. And Teegarden b and c have very close orbits, zipping around the star once every five and eleven days, respectively, so they are very likely tidally locked, too.

So what does a habitable zone exoplanet orbiting a red dwarf star look like? Enter the “Eyeball Earth” exoplanet:

Earth-like, right? [source: Rare Earth Wiki]

I’ve written about this hypothetical world before and it fascinates me. As temperate exoplanets orbit red dwarfs so snugly, and if they have an atmosphere, they may too look like the above artistic rendering.

Looking like an eyeball, the star-facing hemisphere of the planet will be perpetually in daylight, whereas the opposite side will be in perpetual night. The near-side will likely be an arid desert, but the far side will be frozen. Computer simulations of the atmospheric dynamics of such a world are fascinating and well worth the read. The upshot, however, is that these worlds may have dynamic atmospheres where habitability is regulated by powerful winds that blast from the star-facing hemisphere to the night-side, transporting water vapor in a surprisingly complex manner. These worlds will never be fully-habitable, but they may host in interesting array of biological opportunities nonetheless.

For example, there may be a “ring ocean” that separates the desert from the ice, where, on one side, tributaries flow into the hot hemisphere only to be evaporated by the incessant solar heating. The vapor is then transported anti-star-ward, only to be deposited as it freezes on the night-side. One could imagine this massive buildup of ice on the planets night-side as an hemisphere-wide glacier that slowly creeps sun-ward, where it melts and pools into a temperate ring ocean where the process starts all over again.

Like Earth, the atmospheric dynamics would need to be balanced perfectly and if an alien ecosystem manages to get a foothold, perhaps such a planet-wide “water cycle” could be sustained while maintaining the life that thrives within.

“Hypothetically Habitable”

So, whenever we hear about the latest exoplanetary discovery, and take note that these strange new worlds are “Earth-like” or “habitable,” it’s worth remembering that neither may be accurate. Sure, finding an Earth-sized world in orbit around their star in the habitable zone is a great place to start, but it’s just that, a start. What about its atmosphere? Does it have the right blend of atmospheric gases? Is it toxic? Does it even have an atmosphere? Whether or not an alien world has a global magnetic field could make or break its habitable potential. Does its star have sporadic temper tantrums, dousing any local planets with a terrible radiation storm?

These challenges are no stranger to the astronomers who find these worlds and speculate on their astrobiological potential, but in the excitement that proceeds the discovery of “Earth-like” and “habitable” exoplanets, the headlines are often blind to the mechanics of what really makes a world habitable. The next step will be to directly observe the atmospheres of habitable exoplanets, a feat that may be within reach when NASA’s James Webb Space Telescope (JWST) and the ESO’s Extremely Large Telescope (ELT) go online.

The fact is, we know of only ONE habitable world, all the others are hypothetically habitable—so let’s look after this one while it can still sustain the rich and diverse ecosystem we all too often take for granted.

Toxic “Habitable” Worlds Could Be Havens for Alien Microbes

Don’t forget your spacesuit: Complex lifeforms, such as humans, would not survive on many of the worlds we thought would be interstellar tropical getaways

[Pixabay]

Worlds like Earth may be even rarer than we thought.

We live on a planet that provides the perfect balance of ingredients to support a vast ecosystem. This amazing world orbits the Sun at just the right distance where water can exist in a liquid state—a substance that, as we all know, is an essential component for our biology to function. Earth is also an oddball in our solar system, being the only planet where these vast oceans of liquid water persist on its surface, all enshrouded in a thick atmosphere that provides the stage for a complex global interplay of chemical and biological cycles that, before we industrialized humans came along, has supported billions of years of uninterrupted evolution and biological diversity.

Humans, being the proud intelligent beings that we profess to be, are stress-testing this delicate balance by pumping an unending supply of carbon dioxide into the atmosphere. Being a potent greenhouse gas, we’re currently living through a new epoch in our planet’s biological history where an exponential increase in CO2 is being closely followed by an increase in global average temperatures. We are, in effect, altering Earth’s habitability. Well done, humans!

While this trend is a clear threat to the sustainability of our biosphere, spare a thought for other “habitable” worlds that may appear to have all the right stuff for complex lifeforms to evolve, but toxic levels of the very chemicals that keep these worlds habitable has curtailed the possibility of complex life from gaining a foothold.

Welcome to the Not-So-Habitable Zone

Habitable zone exoplanets are the Gold Standard for exoplanet-hunters and astrobiologists alike. Finding a distant alien world within this zone—a region surrounding any star where it’s not too hot and not too cold for water to exist on its surface, a region also known as the “Goldilocks Zone” for obvious reasons—spawns a host of questions that our most advanced telescopes in space and on the ground try to answer: Is that exoplanet Earth-sized? Does it have an atmosphere? What kind of star is it orbiting? Does its system possess a Jupiter-like gas giant? These questions are all trying to help us understand whether that world has the Earthly qualities that could support hypothetical extraterrestrial life.

(Of course, there’s the debate as to whether all life in the universe is Earth-life-like, but as we’re the only biological examples that we know of in the entire galaxy, it’s the best place to start when pondering what biological similarities extraterrestrial life may have to us.)

The habitable zone for exoplanets is a little more complicated than simply the distance at which they orbit their host stars, however. Greenhouse gases, such as carbon dioxide, can extend the area of a star’s habitable zone. For example: If an atmosphere-less planet orbits beyond the outermost edge of its habitable zone, the water it has on its surface will remain in a solid, frozen state. Now, give that planet an atmosphere laced with greenhouse gases and its surface may become warm enough to maintain the water in a liquid state, thereby boosting its habitable potential.

But how much is too much of a good thing? And how might this determination impact our hunt for truly habitable worlds beyond our own?

In a new study published in the Astrophysical Journal, researchers have taken another look at the much-coveted habitable zone exoplanets to find that, while some of the atmospheric gases are essential to maintain a temperature balance, should there be too much of the stuff keeping some of those worlds at a habitable temperature, their toxicity could curtail any lifeforms more complex than a single-celled microbe from evolving.

“This is the first time the physiological limits of life on Earth have been considered to predict the distribution of complex life elsewhere in the universe,” said Timothy Lyons, of the University of California, Riverside, and director of the Alternative Earths Astrobiology Center.

“Imagine a ‘habitable zone for complex life’ defined as a safe zone where it would be plausible to support rich ecosystems like we find on Earth today,” he said in a statement. “Our results indicate that complex ecosystems like ours cannot exist in most regions of the habitable zone as traditionally defined.”

Toxic Limits

Carbon dioxide is an essential component of our ecosystem, particularly as it’s a greenhouse gas. Acting like an insulator, CO2 absorbs energy from the Sun and heats our atmosphere. When in balance, it stops too much energy from being radiated back out into space, thereby preventing our planet from being turned into a snowball. Levels of CO2 have ebbed and flowed throughout the biological history of our planet and it has always been a minor component of atmospheric gases, but its greenhouse effect (i.e. the atmospheric heating effect) is extremely potent and the human-driven 400+ppm levels are causing dramatic climate changes that modern biological systems haven’t experienced for millions of years. That said, the CO2 levels required to keep some “habitable” exoplanets in a warm enough state would need to be a lot more concentrated than the current terrestrial levels, potentially making their atmospheres toxic.

“To sustain liquid water at the outer edge of the conventional habitable zone, a planet would need tens of thousands of times more carbon dioxide than Earth has today,” said lead author Edward Schwieterman, of the NASA Astrobiology Institute. “That’s far beyond the levels known to be toxic to human and animal life on Earth.”

In the blue zone: some of the known exoplanets that fall within the habitable zones of their stars may have an overabundance of CO (yellow/brown), at a level that is toxic to human life. Likewise, the more CO2 (from blue to white) will become toxic at a certain point. The sweet-spot is where Earth sits, with Kepler 442b (if it has a habitable atmosphere) coming in second [Schwieterman et al., 2019. Link to paper]

From their computer simulations, to keep CO2 at acceptable non-toxic levels, while maintaining planetary habitability, the researchers realized that for simple animal life to survive, the habitable zone will shrink to no more than half of the traditional habitable zone. For more complex lifeforms—like humans—to survive, that zone will shrink even more, to less than one third. In other words, to strike the right balance between keeping a hypothetical planet warm enough, but not succumbing to CO2 toxicity, the more complex the lifeform, the more compact the habitable zone.

This issue doesn’t stop with CO2. Carbon monoxide (CO) doesn’t exist at toxic levels in Earth’s atmosphere as our hot and bright Sun drives chemical reactions that remove dangerous levels of the molecule. But for exoplanets orbiting cooler stars that emit lower levels of ultraviolet radiation, such as those that orbit red dwarf stars (re: Proxima Centauri and TRAPPIST-1), dangerous levels of this gas can accumulate. Interestingly, though CO is a very well-known toxic gas that prevents animal blood from carrying oxygen around the body, it is harmless to microbes on Earth. So it may be that habitable zone exoplanets orbiting red dwarfs could be a microbial heaven, but an asphyxiation hell for more complex lifeforms that have cardiovascular systems.

While it could be argued that life finds a way—extraterrestrial organisms may have evolved into more complex states after adapting to their environments, thereby circumventing the problems complex terrestrial life has with CO2 and CO—if we are to find a truly “Earth-like” habitable world that could support human biology, these factors need to be considered before declaring an exoplanet habitable. And, besides, we might want to make the interstellar journey to one of these alien destinations in the distant future; it would be nice to chill on an extraterrestrial beach without having to wear a spacesuit.

“Our discoveries provide one way to decide which of these myriad planets we should observe in more detail,” said Christopher Reinhard, of the Georgia Institute of Technology and co-leader of the Alternative Earths team. “We could identify otherwise habitable planets with carbon dioxide or carbon monoxide levels that are likely too high to support complex life.”

Earth: Unique, Precious

Like many astronomical and astrobiological studies, our ongoing quest to explore strange, new (and habitable) worlds has inevitably led back to our home and the relationship we have with our delicate ecosystem.

“I think showing how rare and special our planet is only enhances the case for protecting it,” Schwieterman said. “As far as we know, Earth is the only planet in the universe that can sustain human life.”

So, before we test the breaking point of our atmosphere’s sustainability, perhaps we should consider our own existential habitability before its too late to repair the damage of carbon dioxide emissions. That’s the only way that we, as complex (and allegedly intelligent) lifeforms, can continue to ask the biggest questions of our rich and mysterious universe.

Life Beneath Europa’s Ice Might Be a Non-Starter

New models trying to infer the geology of potentially habitable moons orbiting Jupiter and Saturn hint at surprisingly cool, geologically inactive worlds, the opposite of what a diverse alien ecosystem would need

[NASA/JPL-Caltech]

Imagine a spaceship finally landing on Europa and slowly drilling into the ice. After weeks of very careful progress, it pierces the moon’s frozen shell and releases a small semi-autonomous submarine connected to the probe with an umbilical to ensure constant communication and a human taking over in case of an emergency. Much of the time, it will chart a course of its own since piloting it with an hour long delay between command and response would be less than ideal. It navigates through the salty ocean, shining its light on structures never before seen by a human eye, making its way deeper and further into the alien environment to find absolutely… nothing at all.

That’s the sad scenario proposed by a team of geologists who crunched the numbers on the four leading contenders to host alien life in our outer solar system: Europa, Ganymede, Titan, and Enceladus. According to their models, looking at gravity, the weight of water and ice on the rocks underneath, and the hardness of the rocks themselves, these moons would be more or less geologically dead. Without volcanoes or sulfur vents, there would be very little in terms of nutrient exchange and therefore, very little food and fuel for an alien ecosystem more complex than microbe colonies.

Of course, these results are a pretty serious departure from the hypotheses commonly held by planetary scientists that the gravity of gas giants cause tidal kneading inside their moons, citing Io as an example. According to the researchers’ model, only Enceladus would be a promising world to look for life, as evidenced by the plumes breaking through its icy crust, spraying organic material into space. The reason why the numbers are different, they say, is because its core is likely to be porous, meaning its ocean would be heated deep inside the moon, fueling geysers and churning organic matter while effectively making the little world a ball of soggy slush.

Since these findings are so different from what’s implied by observations, the researchers aren’t in a rush to publish them are are soliciting other scientists’ opinions to make sure they have a complete picture, and lead investigator Paul Byrne grumbled about his disappointment with what the models indicate. That said, while he’s hoping to be proven wrong, we shouldn’t forget that these are alien worlds and while we’ve spent decades studying them, our knowledge came in bursts. Simply put, we might know a fair bit but far from everything and disappointing surprises may lurk under their icy surfaces and subterranean oceans.

[This article originally appeared on World of Weird Things]

Proxima Centauri Unleashes ‘Doomsday’ Flare

Proxima b just got roasted.

flarestar
Proxima b weather report: Sunny with the chance of a flare of doom (NASA)

Having a bad day? Well, spare a thought for any hypothetical aliens living on Proxima b.

Proxima Centauri is a small, dim M dwarf—commonly known as a red dwarf—located approximately 4.2 light-years away. Over the last couple of years, this diminutive star has spent a lot of time in the headlines after the discovery of a small rocky world, called Proxima b, inside the star’s habitable zone.

With the knowledge that there’s a potentially temperate world on our cosmic doorstep, speculation started to fly that this exoplanet could become a future interstellar destination for humanity or that it’s not just a “habitable” world, perhaps it’s inhabited, too.

Putting aside the fact that we have no idea whether this interesting exoplanet possesses water of any kind, let alone if it even has an atmosphere (two pretty important ingredients for life as we know it), it is certainly an incredible find. But there are some caveats to Proxima b’s habitability and the main one is the unpredictability of its star.

The problem with red dwarfs is that they are angry little stars. In fact, they have long been known as “flare stars” as, well, they produce flares. What they lack in energy output they certainly make up for in explosions. Really, really big explosions.

Last March, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile detected a cataclysmic stellar flare erupting from Proxima Centauri, and this thing put anything our Sun can produce to shame.

“March 24, 2017, was no ordinary day for Proxima Cen,” said astronomer Meredith MacGregor, of the Carnegie Institution for Science in Washington D.C., in a statement.

Over just ten seconds on that special day, a powerful flare boosted Proxima Centauri’s brightness by over 1,000 times greater than normal. This mega-flare event was preceded by a smaller flare event and both flares occurred over a two minute period.

nrao18cb03b
The brightness of Proxima Centauri as observed by ALMA over the two minutes of the event on March 24, 2017 (Meredith MacGregor, Carnegie)

Although astronomers have little idea where Proxima b was in relation to the flaring site, it would have undoubtedly received one hell of a radiation dose from the eruption.

“It’s likely that Proxima b was blasted by high energy radiation during this flare,” said MacGregor. “Over the billions of years since Proxima b formed, flares like this one could have evaporated any atmosphere or ocean and sterilized the surface, suggesting that habitability may involve more than just being the right distance from the host star to have liquid water.”

The habitable zone around any star is the distance at which a world must orbit to receive just the right amount of energy to maintain water in a liquid state. Liquid water, as we all know, is necessary for life (as we know it) to evolve. Whereas the Earth orbits the Sun at an average distance of nearly 100 million miles (a distance that unsurprisingly puts us inside our star’s habitable zone), for a star as cool as Proxima Centauri, its habitable zone is closer. Much, much closer. This means Proxima b, with an orbital distance of approximately 4.6 million miles, is nearly 22 times closer to its star than the Earth is to the Sun. Orbiting so close to a star pumping out a flare ten times more powerful than the largest flare our Sun can generate is the space weather equivalent of sitting inside the blast zone of a nuclear weapon.

As MacGregor argues, Proxima Centauri is known to generate these kinds of flares, and Proxima b has been bathed in its radiation for eons. It doesn’t seem likely that the exoplanet would be able to form an atmosphere, let alone hold onto one.

So, what of Proxima b’s hypothetical aliens? Well, unless they’ve found a niche deep under layers of ice and/or rock, it seems that this “habitable” world is anything but.

For more on why Proxima b would be a bad place to take your honeymoon, read
Sorry, Proxima Centauri Is Probably a Hellhole, Too.

Weird Form of Alien Life May Be Possible on Saturn’s Moon Titan

titan-surface
Artist’s impression of Titan’s surface and atmosphere (credit: Benjamin de Bivort, debivort.org / CC BY-SA 3.0)

Titan is a very strange moon.

Orbiting the ringed gas giant Saturn, Titan is the only moon in the solar system that sports a thick atmosphere. Although the moon is extremely cold, its atmosphere is very dynamic; exhibiting seasons, precipitation and even creating vast seas.

Although this may sound very much like Earth’s atmosphere — where water evaporates from the oceans, condenses as clouds and precipitates as rain, forming rivers that flow back into the oceans — Titan’s atmosphere is dominated by a methane cycle, not a water cycle.

This may sound like the antithesis of Earth’s life-giving chemistry, but astrobiologists have been gradually finding clues to Titan’s habitable potential and today (July 28) scientists have announced the confirmation of a key molecule that could be the proverbial backbone to a weird kind of “alternative” alien life on Titan — based not on liquid water, but on liquid methane.

“The presence of vinyl cyanide in an environment with liquid methane suggests the intriguing possibility of chemical processes that are analogous to those important for life on Earth,” said astrochemistry researcher Maureen Palmer, of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Palmer is lead author of a study published in Science Advances describing the detection of vinyl cyanide (also known as acrylonitrile) at Titan using the awesome power of the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile.

nrao17cb29a
B. Saxton (NRAO/AUI/NSF); NASA

Previous observations of Titan’s atmosphere by NASA’s Cassini mission and chemical modeling of the moon’s surface have hinted that it is the ideal environment for vinyl cyanide to form. But it was only when analysis of archived data collected by ALMA between February to May 2014 was carried out that its presence was confirmed. And there appears to be a lot of the stuff.

So what is vinyl cyanide and why is it so important?

The molecule (C2H3CN) has the ability to form membranes and, if found in liquid pools of hydrocarbons on Titan’s surface, it could form a kind of lipid-based cell membrane analog of living organisms on Earth. In other words, this molecule could stew in primordial pools of hydrocarbons and arrange itself in such a way to create a “protocell” that is “stable and flexible in liquid methane,” said Jonathan Lunine (Cornell University) who, in 2015, was a member of the team who modeled vinyl cyanide and found that it might form cell membranes.

“This is a step forward in understanding whether Titan’s methane seas might host an exotic form of life,” Lunine, who wasn’t a member part of the team that announced today’s results, said in a statement.

Life As We Don’t Know It

When studying Titan’s nitrogen-rich atmosphere, ALMA detected three unambiguous millimeter-wavelength signals produced by vinyl cyanide that originated from 200 kilometers above Titan’s surface. It is well known that the moon’s atmosphere is a vast chemical factory; the energy of the sun and particles from space convert simple organic molecules into more complex chemistry. These chemicals then cycle down to Titans rich hydrocarbon surface.

But speculating about life on Titan is a hard task. The moon’s atmosphere is often compared with that of early Earth’s, but there are some huge differences. Titan is crazy-cold, averaging around 95 Kelvin (that’s an incredible -178 degrees Celsius or -288 degrees Fahrenheit); at no time in history has Earth’s atmosphere been that cold. Also, it’s thought that early Earth had large quantities of carbon dioxide in its atmosphere, Titan does not. As for water? Frozen. Oxygen? Forget about it.

So this research underpins our quest to find the chemistry of life as we DON’T know it, using the building blocks that follow the pattern of life that we do know, but swapping out key components (like water) to see if an analog of life’s chemistry can under very alien conditions.

“Saturn’s moon, Enceladus is the place to search for life like us, life that depends on — and exists in — liquid water,” said Lunine. “Titan, on the other hand, is the place to go to seek the outer limits of life — can some exotic type of life begin and evolve in a truly alien environment, that of liquid methane?”

Perhaps it’s time for a return mission to Titan’s extreme surface.

TRAPPIST-1: The ‘Habitable’ Star System That’s Probably a Hellhole

trappist-1-star
Red dwarfs can be angry little stars (NASA/GSFC/S. Wiessinger)

There are few places that elicit such vivid thoughts of exotic habitable exoplanets than TRAPPIST-1 — a star system located less than 40 light-years from Earth. Alas, according to two recent studies, the planetary system surrounding the tiny red dwarf star may actually be horrible.

For anyone who knows a thing or two about red dwarfs, this may not come as a surprise. Although they are much smaller than our sun, red dwarfs can pack a powerful space weather punch for any world that orbits too close. And, by their nature, any habitable zone surrounding a red dwarf would have to be really compact, a small detail that would bury any “habitable” exoplanet in a terrible onslaught of ultraviolet radiation and a blowtorch of stellar winds. These factors would make the space weather environment around TRAPPIST-1 extreme to say the least.

“The concept of a habitable zone is based on planets being in orbits where liquid water could exist,” said Manasvi Lingam, a Harvard University researcher who led a Center for Astrophysics (CfA) study, published in the International Journal of Astrobiology. “This is only one factor, however, in determining whether a planet is hospitable for life.”

The habitable zone around any star is the distance at which a small rocky world can orbit and receive just the right amount of heating to maintain liquid water on its hypothetical surface. Orbit too close and the water vaporizes; too far and it freezes. As life needs liquid water to evolve, seeking out exoplanets in their star’s habitable zone is a good place to start.

trappist-1-planet
The peaceful surface of a TRAPPIST-1 habitable zone exoplanet as imagined in this artist’s rendering (NASA/JPL-Caltech)

For the sun-Earth system, we live in the middle of the habitable zone, at a distance of one astronomical unit (1 AU). For a world orbiting a red dwarf like TRAPPIST-1, its orbital distance would be a fraction of that — i.e. three worlds orbit TRAPPIST-1 in the star’s habitable zone at between 2.8% and 4.5% the distance the Earth orbits the sun. This is because red dwarfs are very dim and produce meager heating — for a world to receive the same degree of heating that our planet enjoys, a red dwarf world would need to snuggle up really close to its star.

But just because TRAPPIST-1 is dim, it doesn’t mean it holds back on ultraviolet radiation. And, according to this study, the three “habitable” exoplanets in the TRAPPIST-1 system are likely anything but — they would receive disproportionate quantities of damaging ultraviolet radiation.

“Because of the onslaught by the star’s radiation, our results suggest the atmosphere on planets in the TRAPPIST-1 system would largely be destroyed,” said co-author Avi Loeb, who also works at Harvard. “This would hurt the chances of life forming or persisting.”

Life as we know it needs an atmosphere, so the erosion by UV radiation seems like a significant downer for the possible evolution of complex life.

That’s not the only bad news for our extraterrestrial life dreams around TRAPPIST-1, however. Another study carried out by the CfA and the University of Massachusetts in Lowell (and published in The Astrophysical Journal Letters) found more problems. Like the sun, TRAPPIST-1 generates stellar winds that blast energetic particles into space. As these worlds orbit the star so close, they would be sitting right next to the proverbial nozzle of a stellar blowtorch — models suggest they experience 1,000 to 100,000 times stellar wind pressure than the solar wind exerts on Earth.

And, again, that’s not good news if a planet wants to hold onto its atmosphere.

“The Earth’s magnetic field acts like a shield against the potentially damaging effects of the solar wind,” said Cecilia Garraffo of the CfA and study lead. “If Earth were much closer to the sun and subjected to the onslaught of particles like the TRAPPIST-1 star delivers, our planetary shield would fail pretty quickly.”

trappist-1-system
The TRAPPIST-1 exoplanet family. TRAPPIST-1 e, f and g are located in the system’s habitable zone (NASA/JPL-Caltech)

So it looks like TRAPPIST-1 e, f and g really take a pounding from their angry little star, but the researchers point out that it doesn’t mean we should forget red dwarfs as potential life-giving places. It’s just that life would have many more challenges to endure than we do on our comparatively peaceful place in the galaxy.

“We’re definitely not saying people should give up searching for life around red dwarf stars,” said co-author Jeremy Drake, also from CfA. “But our work and the work of our colleagues shows we should also target as many stars as possible that are more like the sun.”

This Is NASA’s Future Mars 2020 Rover Looking for Biosignatures on the Red Planet

pia21635_small
NASA/JPL-Caltech

While Opportunity and Curiosity continue to explore the surface of Mars, the launch date of NASA’s next big rover mission is on the horizon. And here’s a stunning artist’s impression of the mission that NASA released on Tuesday.

Wait. Isn’t that Curiosity?

No. While the Mars 2020 rover will certainly look like Curiosity, as many of the current rover’s design features will be worked into NASA’s next six-wheeled robot, there will be some key differences in the next rover’s science.

Rather than seeking out past and present habitable environments (as Curiosity is currently doing on the slopes of Mount Sharp), one of Mars 2020’s stated science goals is to directly search for biological signatures of past and present microbial life on Mars. This next-generation rover will also feature a drill that can bore deep into rocks, pull samples and store them on the Martian surface for a possible future sample return mission.

For more on Mars 2020, check out NASA’s mission site.

Enceladus Could Be a Cosmic Shaker for the Cocktail of Life

NASA/JPL-Caltech/Space Science Institute

A little frozen Saturn moon, with a diameter that could easily fit inside the state of New Mexico, holds some big promises for the possibility of finding basic alien life in our solar system.

Enceladus is often overshadowed by its larger distant cousin, Europa, which orbits Jupiter and the Jovian moon’s awesome potential has been widely publicized. But Enceladus has one thing Europa doesn’t — it has been visited very closely by a robotic space probe that could take a sniff of its famous water vapor plumes. And this week, there was much excitement about another facet of the moon’s complex subsurface chemistry, thanks to analysis carried out on data gathered by NASA’s Cassini mission.

But before we get into why this new discovery is so cool, let’s take a very quick look at the other signs of Enceladus’ life-giving potential.

The Cocktail Of Life

Being living, breathing creatures on a habitable planet, it may not come as a surprise to you that for biology to evolve, it needs a few basic ingredients. Liquid water is a definite requirement, of course. Heat also helps. Throw some organic chemistry into the mix and we have a party.

Enceladus, however, is a tiny icy globe, there’s no sign of liquid water on its surface. But when Cassini arrived at Saturn in 2004, Enceladus revealed some of its best-kept secrets. Firstly, it may be a smooth ice ball, but the moon has a large quantity of water under its surface. This water even escapes as geysers, through fissures in its icy crust, producing stunning plumes that eject material hundreds of miles high and into Saturn’s rings.

Before Cassini was launched to Saturn, we had little clue about Enceladus’ watery potential — though this finding explained why Enceladus appeared so bright and how it contributes material to Saturn’s E-ring. Fortunately, the spacecraft has an instrument on board — a mass spectrometer — that could be used to “taste” the watery goodness of these plumes. During its Enceladus flybys, Cassini was able to fly through the plumes, revealing a surprisingly rich chemical cocktail — including a high concentration of organic chemistry.

It’s as if all the building blocks of life have been thrown into a small icy cocoon, shaken up and gently heated from within.

Now, another fascinating discovery has been made. Further analysis of Cassini data from its last 2015 plume fly-through, molecular hydrogen has been detected and planetary scientists are more than a little excited to add this to Enceladus’ habitable repertoire.

Deep In The Enceladus Abyss

“Hydrogen is a source of chemical energy for microbes that live in the Earth’s oceans near hydrothermal vents,” said Hunter Waite, principal investigator of Cassini’s Ion Neutral Mass Spectrometer (INMS) at the Southwest Research Institute (SwRI), in a statement on Thursday (April 13). “Our results indicate the same chemical energy source is present in the ocean of Enceladus.”

This hydrogen could be a byproduct of chemical reactions going on between the moon’s rocky core and the warm water surrounding it. And there’s a lot of hydrogen gas being vented, probably enough to sustain basic lifeforms deep in the Enceladus abyss.

“The amount of molecular hydrogen we detected is high enough to support microbes similar to those that live near hydrothermal vents on Earth,” added co-author Christopher Glein, who specializes in extraterrestrial chemical oceanography, also of SwRI. “If similar organisms are present in Enceladus, they could ‘burn’ the hydrogen to obtain energy for chemosynthesis, which could conceivably serve as a foundation for a larger ecosystem.”

Yes, we’re talking alien microbes. (Also, “extraterrestrial chemical oceanography” — oceans on other worlds! — is one hell of a mind-blowing topic to specialize in, just sayin’.) And did he mention “larger ecosystem”? Why yes! Yes he did.

So, in short, we know Enceladus has a liquid water ocean. We know that it has an internal heat source (hence the liquid oceans). We also know there’s organic chemistry. And now there’s solid hints that there’s water-rock interactions going on that terrestrial microbes living at Earth’s ocean vents like to munch on. If that’s not a huge, blinking neon sign pointing at Enceladus, saying: “We need a surface mission here!” I don’t know what is.

Although the researchers are keen to emphasize that alien microbes have not been found (because Cassini isn’t capable of looking for life), the universe has given us a moon-sized Petri dish where an “ecosystem” may have taken hold. All the ingredients are there, wouldn’t it be cool to find out if Enceladus could be another place in the solar system where life may be hanging out?

There was also some great news about Europa’s habitable potential this week, but you can go here for that piece of cosmic awesomeness.

Want to know more about Cassini’s final months at Saturn, check out my recent Space.com article on the commencement of the veteran mission’s Grand Finale.

Life: Not So Grim On The Galactic Rim?

M80 -- an old globular cluster in the Milky Way -- is full of metal-poor stars. Do they still have exoplanetary potential? (NASA)
M80 — an old globular cluster in the Milky Way — is full of metal-poor stars. Do they still have exoplanetary potential? (NASA)

The galaxy may be brimming with habitable small worlds and many older star systems could possess the conditions ripe for advanced alien civilizations to evolve. This prediction comes in the wake of new analysis of data from NASA’s Kepler space telescope and ground based observatories by a team of Danish and American astronomers.

Led by Lars Buchhave of the Niels Bohr Institute in Copenhagen, the team has revealed that stars containing low quantities of heavy elements — known as “metal poor” stars — are still capable of nurturing exoplanets with Earth-like qualities.

“I wanted to investigate whether planets only form around certain types of stars and whether there is a correlation between the size of the planets and the type of host star it is orbiting,” Buchhave said.

After analyzing the elemental composition of stars hosting 226 small exoplanets — some as small as the rocky planets in the Solar System — Buchhave’s team discovered that “unlike the gas giants, the occurrence of smaller planets is not strongly dependent on stars with a high content of heavy elements. Planets that are up to four times the size of Earth can form around very different stars — also stars that are poorer in heavy elements,” he concluded.

The Kepler mission, for example, is actively carrying out a search for exoplanets that pass in front of their host stars (events known as “transits”). With Kepler’s sensitive eye, it is capable of detecting exoplanets of similar size to Earth, or even as small as Mars.

Interestingly, as it surveys Sun-like stars, Kepler can detect tiny, rocky worlds that orbit within the “habitable zones” of their stars. It’s no huge leap of the imagination to think alien life may have evolved on some of these worlds.

But a problem facing astronomers hunting for bona fide “Earth-like” exoplanets is that many older stars have low quantities of heavier elements (such as the silicon and iron) that small rocky worlds need to become… well… rocky. But Buchhave’s discovery suggests that stars once considered infertile may in fact have a shot at birthing small exoplanets.

Jill Tarter, Chair of the SETI Institute, points out that this could be a boon for the search for intelligent extraterrestrials. “The idea that very old stars could also sport habitable planets is encouraging for our searches,” she said in a SETI press release on Wednesday.

Tarter also highlights the fact that life took a long time to evolve into an advanced technological state on Earth. Therefore, should there be small habitable rocky worlds orbiting ancient stars (as this research suggests), perhaps alien life far older and more technologically advanced than ourselves are out there.

Although this seems to make logical sense, it may not make biological sense. Metal-poor stars might have the ability to create small worlds, but just because there are likely many small worlds out there, it doesn’t mean life can be nurtured. But then again, regions of the Milky Way once considered to be devoid of exoplanets may now have a stab at providing a planetary habitat for extraterrestrial biology to gain a foothold. Whether or not these metal poor stars host the right ingredients for the building blocks of life probably won’t be known for some time.

In 2009, I wrote an article (see “Life Is Grim On The Galactic Rim“) that grabbed the attention of National Geographic writer Ken Croswell who quoted my Astroengine.com article in the December 2010 edition of the magazine. In the text, I discussed some research that investigated the strange lack of protoplanetary disks around a selection of metal-poor star clusters in the outermost regions of the galaxy. The lack of a protoplanetary disk means a lack of exoplanet-birthing potential and a grim outlook for life to evolve in regions of the galaxy distant from the galactic core.

The conclusion of this 2009 work appears to contradict these most recent findings and the suggestion that advanced alien civilizations may have evolved around metal-poor stars. Whether these stars are the exception rather than the rule, or whether their low metallicity influences the size or visibility of their protoplanetary disks would be an interesting factor to consider.

Although SETI searches have yet to turn up any signal from an advanced alien technology, Kepler is proving that stars — regardless of their metallicity — have the ability to host small rocky worlds. Should life have taken hold on these worlds, then perhaps, some day, we may intercept an interstellar phone call from one of them.

This topic and a myriad of others will be discussed on June 22-24 where the world’s leaders in the field of alien and exoplanet hunting will meet at the Hyatt Santa Clara hotel in California’s Silicon Valley for SETIcon.

UPDATE: After tweeting this article, @spacearcheology retweeted my link with the following comment:

This is something I neglected to consider in the original post. If there are indeed many more small rocky worlds out there — particularly around metal-poor stars that are, by their nature, ancient — why the heck haven’t we detected any ancient extraterrestrial intelligences yet? This has just become the Fermi Paradox PLUS…