Weird Form of Alien Life May Be Possible on Saturn’s Moon Titan

titan-surface
Artist’s impression of Titan’s surface and atmosphere (credit: Benjamin de Bivort, debivort.org / CC BY-SA 3.0)

Titan is a very strange moon.

Orbiting the ringed gas giant Saturn, Titan is the only moon in the solar system that sports a thick atmosphere. Although the moon is extremely cold, its atmosphere is very dynamic; exhibiting seasons, precipitation and even creating vast seas.

Although this may sound very much like Earth’s atmosphere — where water evaporates from the oceans, condenses as clouds and precipitates as rain, forming rivers that flow back into the oceans — Titan’s atmosphere is dominated by a methane cycle, not a water cycle.

This may sound like the antithesis of Earth’s life-giving chemistry, but astrobiologists have been gradually finding clues to Titan’s habitable potential and today (July 28) scientists have announced the confirmation of a key molecule that could be the proverbial backbone to a weird kind of “alternative” alien life on Titan — based not on liquid water, but on liquid methane.

“The presence of vinyl cyanide in an environment with liquid methane suggests the intriguing possibility of chemical processes that are analogous to those important for life on Earth,” said astrochemistry researcher Maureen Palmer, of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Palmer is lead author of a study published in Science Advances describing the detection of vinyl cyanide (also known as acrylonitrile) at Titan using the awesome power of the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile.

nrao17cb29a
B. Saxton (NRAO/AUI/NSF); NASA

Previous observations of Titan’s atmosphere by NASA’s Cassini mission and chemical modeling of the moon’s surface have hinted that it is the ideal environment for vinyl cyanide to form. But it was only when analysis of archived data collected by ALMA between February to May 2014 was carried out that its presence was confirmed. And there appears to be a lot of the stuff.

So what is vinyl cyanide and why is it so important?

The molecule (C2H3CN) has the ability to form membranes and, if found in liquid pools of hydrocarbons on Titan’s surface, it could form a kind of lipid-based cell membrane analog of living organisms on Earth. In other words, this molecule could stew in primordial pools of hydrocarbons and arrange itself in such a way to create a “protocell” that is “stable and flexible in liquid methane,” said Jonathan Lunine (Cornell University) who, in 2015, was a member of the team who modeled vinyl cyanide and found that it might form cell membranes.

“This is a step forward in understanding whether Titan’s methane seas might host an exotic form of life,” Lunine, who wasn’t a member part of the team that announced today’s results, said in a statement.

Life As We Don’t Know It

When studying Titan’s nitrogen-rich atmosphere, ALMA detected three unambiguous millimeter-wavelength signals produced by vinyl cyanide that originated from 200 kilometers above Titan’s surface. It is well known that the moon’s atmosphere is a vast chemical factory; the energy of the sun and particles from space convert simple organic molecules into more complex chemistry. These chemicals then cycle down to Titans rich hydrocarbon surface.

But speculating about life on Titan is a hard task. The moon’s atmosphere is often compared with that of early Earth’s, but there are some huge differences. Titan is crazy-cold, averaging around 95 Kelvin (that’s an incredible -178 degrees Celsius or -288 degrees Fahrenheit); at no time in history has Earth’s atmosphere been that cold. Also, it’s thought that early Earth had large quantities of carbon dioxide in its atmosphere, Titan does not. As for water? Frozen. Oxygen? Forget about it.

So this research underpins our quest to find the chemistry of life as we DON’T know it, using the building blocks that follow the pattern of life that we do know, but swapping out key components (like water) to see if an analog of life’s chemistry can under very alien conditions.

“Saturn’s moon, Enceladus is the place to search for life like us, life that depends on — and exists in — liquid water,” said Lunine. “Titan, on the other hand, is the place to go to seek the outer limits of life — can some exotic type of life begin and evolve in a truly alien environment, that of liquid methane?”

Perhaps it’s time for a return mission to Titan’s extreme surface.

TRAPPIST-1: The ‘Habitable’ Star System That’s Probably a Hellhole

trappist-1-star
Red dwarfs can be angry little stars (NASA/GSFC/S. Wiessinger)

There are few places that elicit such vivid thoughts of exotic habitable exoplanets than TRAPPIST-1 — a star system located less than 40 light-years from Earth. Alas, according to two recent studies, the planetary system surrounding the tiny red dwarf star may actually be horrible.

For anyone who knows a thing or two about red dwarfs, this may not come as a surprise. Although they are much smaller than our sun, red dwarfs can pack a powerful space weather punch for any world that orbits too close. And, by their nature, any habitable zone surrounding a red dwarf would have to be really compact, a small detail that would bury any “habitable” exoplanet in a terrible onslaught of ultraviolet radiation and a blowtorch of stellar winds. These factors would make the space weather environment around TRAPPIST-1 extreme to say the least.

“The concept of a habitable zone is based on planets being in orbits where liquid water could exist,” said Manasvi Lingam, a Harvard University researcher who led a Center for Astrophysics (CfA) study, published in the International Journal of Astrobiology. “This is only one factor, however, in determining whether a planet is hospitable for life.”

The habitable zone around any star is the distance at which a small rocky world can orbit and receive just the right amount of heating to maintain liquid water on its hypothetical surface. Orbit too close and the water vaporizes; too far and it freezes. As life needs liquid water to evolve, seeking out exoplanets in their star’s habitable zone is a good place to start.

trappist-1-planet
The peaceful surface of a TRAPPIST-1 habitable zone exoplanet as imagined in this artist’s rendering (NASA/JPL-Caltech)

For the sun-Earth system, we live in the middle of the habitable zone, at a distance of one astronomical unit (1 AU). For a world orbiting a red dwarf like TRAPPIST-1, its orbital distance would be a fraction of that — i.e. three worlds orbit TRAPPIST-1 in the star’s habitable zone at between 2.8% and 4.5% the distance the Earth orbits the sun. This is because red dwarfs are very dim and produce meager heating — for a world to receive the same degree of heating that our planet enjoys, a red dwarf world would need to snuggle up really close to its star.

But just because TRAPPIST-1 is dim, it doesn’t mean it holds back on ultraviolet radiation. And, according to this study, the three “habitable” exoplanets in the TRAPPIST-1 system are likely anything but — they would receive disproportionate quantities of damaging ultraviolet radiation.

“Because of the onslaught by the star’s radiation, our results suggest the atmosphere on planets in the TRAPPIST-1 system would largely be destroyed,” said co-author Avi Loeb, who also works at Harvard. “This would hurt the chances of life forming or persisting.”

Life as we know it needs an atmosphere, so the erosion by UV radiation seems like a significant downer for the possible evolution of complex life.

That’s not the only bad news for our extraterrestrial life dreams around TRAPPIST-1, however. Another study carried out by the CfA and the University of Massachusetts in Lowell (and published in The Astrophysical Journal Letters) found more problems. Like the sun, TRAPPIST-1 generates stellar winds that blast energetic particles into space. As these worlds orbit the star so close, they would be sitting right next to the proverbial nozzle of a stellar blowtorch — models suggest they experience 1,000 to 100,000 times stellar wind pressure than the solar wind exerts on Earth.

And, again, that’s not good news if a planet wants to hold onto its atmosphere.

“The Earth’s magnetic field acts like a shield against the potentially damaging effects of the solar wind,” said Cecilia Garraffo of the CfA and study lead. “If Earth were much closer to the sun and subjected to the onslaught of particles like the TRAPPIST-1 star delivers, our planetary shield would fail pretty quickly.”

trappist-1-system
The TRAPPIST-1 exoplanet family. TRAPPIST-1 e, f and g are located in the system’s habitable zone (NASA/JPL-Caltech)

So it looks like TRAPPIST-1 e, f and g really take a pounding from their angry little star, but the researchers point out that it doesn’t mean we should forget red dwarfs as potential life-giving places. It’s just that life would have many more challenges to endure than we do on our comparatively peaceful place in the galaxy.

“We’re definitely not saying people should give up searching for life around red dwarf stars,” said co-author Jeremy Drake, also from CfA. “But our work and the work of our colleagues shows we should also target as many stars as possible that are more like the sun.”

This Is NASA’s Future Mars 2020 Rover Looking for Biosignatures on the Red Planet

pia21635_small
NASA/JPL-Caltech

While Opportunity and Curiosity continue to explore the surface of Mars, the launch date of NASA’s next big rover mission is on the horizon. And here’s a stunning artist’s impression of the mission that NASA released on Tuesday.

Wait. Isn’t that Curiosity?

No. While the Mars 2020 rover will certainly look like Curiosity, as many of the current rover’s design features will be worked into NASA’s next six-wheeled robot, there will be some key differences in the next rover’s science.

Rather than seeking out past and present habitable environments (as Curiosity is currently doing on the slopes of Mount Sharp), one of Mars 2020’s stated science goals is to directly search for biological signatures of past and present microbial life on Mars. This next-generation rover will also feature a drill that can bore deep into rocks, pull samples and store them on the Martian surface for a possible future sample return mission.

For more on Mars 2020, check out NASA’s mission site.

Enceladus Could Be a Cosmic Shaker for the Cocktail of Life

NASA/JPL-Caltech/Space Science Institute

A little frozen Saturn moon, with a diameter that could easily fit inside the state of New Mexico, holds some big promises for the possibility of finding basic alien life in our solar system.

Enceladus is often overshadowed by its larger distant cousin, Europa, which orbits Jupiter and the Jovian moon’s awesome potential has been widely publicized. But Enceladus has one thing Europa doesn’t — it has been visited very closely by a robotic space probe that could take a sniff of its famous water vapor plumes. And this week, there was much excitement about another facet of the moon’s complex subsurface chemistry, thanks to analysis carried out on data gathered by NASA’s Cassini mission.

But before we get into why this new discovery is so cool, let’s take a very quick look at the other signs of Enceladus’ life-giving potential.

The Cocktail Of Life

Being living, breathing creatures on a habitable planet, it may not come as a surprise to you that for biology to evolve, it needs a few basic ingredients. Liquid water is a definite requirement, of course. Heat also helps. Throw some organic chemistry into the mix and we have a party.

Enceladus, however, is a tiny icy globe, there’s no sign of liquid water on its surface. But when Cassini arrived at Saturn in 2004, Enceladus revealed some of its best-kept secrets. Firstly, it may be a smooth ice ball, but the moon has a large quantity of water under its surface. This water even escapes as geysers, through fissures in its icy crust, producing stunning plumes that eject material hundreds of miles high and into Saturn’s rings.

Before Cassini was launched to Saturn, we had little clue about Enceladus’ watery potential — though this finding explained why Enceladus appeared so bright and how it contributes material to Saturn’s E-ring. Fortunately, the spacecraft has an instrument on board — a mass spectrometer — that could be used to “taste” the watery goodness of these plumes. During its Enceladus flybys, Cassini was able to fly through the plumes, revealing a surprisingly rich chemical cocktail — including a high concentration of organic chemistry.

It’s as if all the building blocks of life have been thrown into a small icy cocoon, shaken up and gently heated from within.

Now, another fascinating discovery has been made. Further analysis of Cassini data from its last 2015 plume fly-through, molecular hydrogen has been detected and planetary scientists are more than a little excited to add this to Enceladus’ habitable repertoire.

Deep In The Enceladus Abyss

“Hydrogen is a source of chemical energy for microbes that live in the Earth’s oceans near hydrothermal vents,” said Hunter Waite, principal investigator of Cassini’s Ion Neutral Mass Spectrometer (INMS) at the Southwest Research Institute (SwRI), in a statement on Thursday (April 13). “Our results indicate the same chemical energy source is present in the ocean of Enceladus.”

This hydrogen could be a byproduct of chemical reactions going on between the moon’s rocky core and the warm water surrounding it. And there’s a lot of hydrogen gas being vented, probably enough to sustain basic lifeforms deep in the Enceladus abyss.

“The amount of molecular hydrogen we detected is high enough to support microbes similar to those that live near hydrothermal vents on Earth,” added co-author Christopher Glein, who specializes in extraterrestrial chemical oceanography, also of SwRI. “If similar organisms are present in Enceladus, they could ‘burn’ the hydrogen to obtain energy for chemosynthesis, which could conceivably serve as a foundation for a larger ecosystem.”

Yes, we’re talking alien microbes. (Also, “extraterrestrial chemical oceanography” — oceans on other worlds! — is one hell of a mind-blowing topic to specialize in, just sayin’.) And did he mention “larger ecosystem”? Why yes! Yes he did.

So, in short, we know Enceladus has a liquid water ocean. We know that it has an internal heat source (hence the liquid oceans). We also know there’s organic chemistry. And now there’s solid hints that there’s water-rock interactions going on that terrestrial microbes living at Earth’s ocean vents like to munch on. If that’s not a huge, blinking neon sign pointing at Enceladus, saying: “We need a surface mission here!” I don’t know what is.

Although the researchers are keen to emphasize that alien microbes have not been found (because Cassini isn’t capable of looking for life), the universe has given us a moon-sized Petri dish where an “ecosystem” may have taken hold. All the ingredients are there, wouldn’t it be cool to find out if Enceladus could be another place in the solar system where life may be hanging out?

There was also some great news about Europa’s habitable potential this week, but you can go here for that piece of cosmic awesomeness.

Want to know more about Cassini’s final months at Saturn, check out my recent Space.com article on the commencement of the veteran mission’s Grand Finale.

Life: Not So Grim On The Galactic Rim?

M80 -- an old globular cluster in the Milky Way -- is full of metal-poor stars. Do they still have exoplanetary potential? (NASA)
M80 — an old globular cluster in the Milky Way — is full of metal-poor stars. Do they still have exoplanetary potential? (NASA)

The galaxy may be brimming with habitable small worlds and many older star systems could possess the conditions ripe for advanced alien civilizations to evolve. This prediction comes in the wake of new analysis of data from NASA’s Kepler space telescope and ground based observatories by a team of Danish and American astronomers.

Led by Lars Buchhave of the Niels Bohr Institute in Copenhagen, the team has revealed that stars containing low quantities of heavy elements — known as “metal poor” stars — are still capable of nurturing exoplanets with Earth-like qualities.

“I wanted to investigate whether planets only form around certain types of stars and whether there is a correlation between the size of the planets and the type of host star it is orbiting,” Buchhave said.

After analyzing the elemental composition of stars hosting 226 small exoplanets — some as small as the rocky planets in the Solar System — Buchhave’s team discovered that “unlike the gas giants, the occurrence of smaller planets is not strongly dependent on stars with a high content of heavy elements. Planets that are up to four times the size of Earth can form around very different stars — also stars that are poorer in heavy elements,” he concluded.

The Kepler mission, for example, is actively carrying out a search for exoplanets that pass in front of their host stars (events known as “transits”). With Kepler’s sensitive eye, it is capable of detecting exoplanets of similar size to Earth, or even as small as Mars.

Interestingly, as it surveys Sun-like stars, Kepler can detect tiny, rocky worlds that orbit within the “habitable zones” of their stars. It’s no huge leap of the imagination to think alien life may have evolved on some of these worlds.

But a problem facing astronomers hunting for bona fide “Earth-like” exoplanets is that many older stars have low quantities of heavier elements (such as the silicon and iron) that small rocky worlds need to become… well… rocky. But Buchhave’s discovery suggests that stars once considered infertile may in fact have a shot at birthing small exoplanets.

Jill Tarter, Chair of the SETI Institute, points out that this could be a boon for the search for intelligent extraterrestrials. “The idea that very old stars could also sport habitable planets is encouraging for our searches,” she said in a SETI press release on Wednesday.

Tarter also highlights the fact that life took a long time to evolve into an advanced technological state on Earth. Therefore, should there be small habitable rocky worlds orbiting ancient stars (as this research suggests), perhaps alien life far older and more technologically advanced than ourselves are out there.

Although this seems to make logical sense, it may not make biological sense. Metal-poor stars might have the ability to create small worlds, but just because there are likely many small worlds out there, it doesn’t mean life can be nurtured. But then again, regions of the Milky Way once considered to be devoid of exoplanets may now have a stab at providing a planetary habitat for extraterrestrial biology to gain a foothold. Whether or not these metal poor stars host the right ingredients for the building blocks of life probably won’t be known for some time.

In 2009, I wrote an article (see “Life Is Grim On The Galactic Rim“) that grabbed the attention of National Geographic writer Ken Croswell who quoted my Astroengine.com article in the December 2010 edition of the magazine. In the text, I discussed some research that investigated the strange lack of protoplanetary disks around a selection of metal-poor star clusters in the outermost regions of the galaxy. The lack of a protoplanetary disk means a lack of exoplanet-birthing potential and a grim outlook for life to evolve in regions of the galaxy distant from the galactic core.

The conclusion of this 2009 work appears to contradict these most recent findings and the suggestion that advanced alien civilizations may have evolved around metal-poor stars. Whether these stars are the exception rather than the rule, or whether their low metallicity influences the size or visibility of their protoplanetary disks would be an interesting factor to consider.

Although SETI searches have yet to turn up any signal from an advanced alien technology, Kepler is proving that stars — regardless of their metallicity — have the ability to host small rocky worlds. Should life have taken hold on these worlds, then perhaps, some day, we may intercept an interstellar phone call from one of them.

This topic and a myriad of others will be discussed on June 22-24 where the world’s leaders in the field of alien and exoplanet hunting will meet at the Hyatt Santa Clara hotel in California’s Silicon Valley for SETIcon.

UPDATE: After tweeting this article, @spacearcheology retweeted my link with the following comment:

This is something I neglected to consider in the original post. If there are indeed many more small rocky worlds out there — particularly around metal-poor stars that are, by their nature, ancient — why the heck haven’t we detected any ancient extraterrestrial intelligences yet? This has just become the Fermi Paradox PLUS…