Sun Erupts With a Monster X9-Class Solar Flare — Earth Feels Its Punch

Credit: NASA/SDO

This morning, the sun erupted with the most powerful solar flare in a decade, blasting the Earth’s upper atmosphere with energetic X-ray and extreme ultraviolet (EUV) radiation.

The flare was triggered by intense magnetic activity over an active region called AR2673 that has been roiling with sunspot activity for days, threatening an uptick in space weather activity. As promised, that space weather brought an explosive event at 1202 UTC (8:02 a.m. PT) that ionized the Earth’s upper atmosphere and causing a shortwave radio blackout over Europe, Africa and the Atlantic Ocean, reports

Radio blackout map: When the Earth’s ionosphere is energized by X-ray and EUV radiation from solar flares, certain radio frequencies are absorbed by increased ionization of certain layers of the atmosphere, posing issues for global radio communications (NOAA)

The powerful X9.3-class flare came after an earlier X2.2 blast from the same active region, a significant flare in itself. X-class flares are the most powerful type of solar flares.

The electromagnetic radiation emitted by flaring events affect the Earth’s ionosphere immediately, but now space weather forecasters are on the lookout for a more delayed impact of this eruption.

The powerful X9-class solar flare erupted from the active region (AR) 2673, a large cluster of sunspots — seen here by NASA’s Solar Dynamics Observatory (NASA/SDO)

Solar flares can create magnetic instabilities that may launch coronal mass ejections (CMEs) — basically vast magnetized bubbles of energetic solar plasma — into interplanetary space. Depending on the conditions, these CMEs may take hours or days to reach Earth (if they are Earth-directed) and can generate geomagnetic storms should they collide and interact with our planet’s global magnetic field.

Update: According to observations gathered by NASA’s STEREO-A spacecraft, the flare did produce a CME and space weather forecasters are determining its trajectory to see whether it is Earth-directed. Also, NASA has produced a series of beautiful images from the SDO, showing the flare over a range of frequencies.


Vast Magnetic Canyon Opens up on the Sun — Choppy Space Weather Incoming?

A “live” view of our sun’s corona (NASA/SDO)

As the sun dips into extremely low levels of activity before the current cycle’s “solar minimum”, a vast coronal hole has opened up in the sun’s lower atmosphere, sending a stream of fast-moving plasma our way.

To the untrained eye, this observation of the lower corona — the sun’s magnetically-dominated multi-million degree atmosphere — may look pretty dramatic. Like a vast rip in the sun’s disk, this particular coronal hole represents a huge region of “open” magnetic field lines reaching out into the solar system. Like a firehose, this open region is blasting the so-called fast solar wind in our direction and it could mean some choppy space weather is on the way.

As imaged by NASA’s Solar Dynamics Observatory today, this particular observation is sensitive to extreme ultraviolet radiation at a wavelength of 193 (19.3 nanometers) — the typical emission from a very ionized form of iron (iron-12, or FeXII) at a temperature of a million degrees Kelvin. In coronal holes, it looks as if there is little to no plasma at that temperature present, but that’s not the case; it’s just very rarefied as it’s traveling at tremendous speed and escaping into space.

The brighter regions represent closed field lines, basically big loops of magnetism that traps plasma at high density. Regions of close fieldlines cover the sun and coronal loops are known to contain hot plasma being energized by coronal heating processes.

When a coronal hole such as this rotates into view, we know that a stream of high-speed plasma is on the way and, in a few days, could have some interesting effects on Earth’s geomagnetic field. This same coronal hole made an appearance when it last rotated around the sun, generating some nice high-latitude auroras. predicts that the next stream will reach our planet on March 28th or 29th, potentially culminating in a “moderately strong” G2-class geomagnetic storm. The onset of geomagnetic storms can generate impressive auroral displays at high latitudes. Although not as dramatic as an Earth-directed coronal mass ejection or solar flare, the radiation environment in Earth orbit will no doubt increase.

The sun as seen right now by the SDO’s HMI instrument (NASA/SDO)

The sun is currently in a downward trend in activity and is expected to reach “solar minimum” by around 2019. As expected, sunspot numbers are decreasing steadily, meaning the internal magnetic dynamo of our nearest star is starting to ebb, reducing the likelihood of explosive events like flares and CMEs. This is all part of the natural 11-year cycle of our sun and, though activity is slowly ratcheting down its levels of activity, there’s still plenty of space weather action going on.

Can Spicules Explain the Mysteries of Coronal Heating?

Solar spicules as imaged by NASA's Solar Dynamics Observatory (NASA)
Solar spicules as imaged by NASA's Solar Dynamics Observatory (NASA)

There’s one recurring question I’ve been asking for nearly a decade: Why is the Sun’s corona (its atmosphere) so hot?

When asking this out loud I inevitably get the sarcastic “um, because the Sun is… hot?” reply. Yes, the Sun is hot, really hot, but solar physicists have spent the last half-century trying to understand why the corona is millions of degrees hotter than the solar surface.

After all, if the air surrounding a light bulb was a couple of magnitudes hotter than the bulb’s surface, you’d want to know why that’s the case, right? At first glance, the solar atmosphere is breaking all kinds of thermodynamic laws.

The Sun is a strange beast and because of its magnetic dominance, energy travels through the solar body in rather unfamiliar ways. And today, a group of solar physicists have put forward a new theory as to where the coronal energy is coming from. But they’ve only been able to do this with help from NASA’s newest and most advanced solar telescope: the Solar Dynamics Observatory, or SDO.

Using the SDO’s high-definition cameras and imagery from the awesome Japanese Hinode solar observatory, features previously invisible to solar astronomers have been resolved. The features in question are known as “spicules.” These small-scale jets inject solar plasma from the solar surface into the lower corona, but until now they’ve been considered too cool to have any appreciable heating effect.

That was until a new type of hot, high-speed spicule was discovered.

“It’s a little jet, then it takes off,” solar physicist Scott McIntosh, of the National Center for Atmospheric Research’s High Altitude Observatory, told Discovery News’ Larry O’Hanlon. “What we basically find is that the connection is the heated blobs of plasma. It’s kind of a missing link that we’ve been looking for since the 1960s.”

These Type II spicules blast hot multi-million degree Kelvin plasma at speeds of 100 to 150 kilometers per second (62 to 93 miles per second) into the corona and then dissipate. What’s more, these aren’t isolated events, they’ve been observed all over the Sun. “This phenomenon is truly ubiquitous and populates the solar wind,” said McIntosh.

While this research provides more clarity on coronal dynamics, McIntosh is keen to point out that Type II spicules probably don’t tell the whole coronal heating story.

NASA’s coronal physics heavyweight James Klimchuk agrees. “It is very nice work, but it is absolutely not the final story on the origin of hot coronal plasma,” he said.

“Based on some simple calculations I have done, spicules account for only a small fraction of the hot plasma.”

Klimchuk favors coronal heating through magnetic stresses in the lower atmosphere generating small reconnection events. Right at the base of the corona, loops of magnetic flux channeling multi-million degree plasma high above the Sun’s chromosphere become stressed and eventually snap. These reconnection processes produce sub-resolution nanoflare events — akin to small explosions releasing energy into the solar plasma, heating it up.

Another heating mechanism — a mechanism I studied during my solar research days (.pdf) — is that of wave heating, when magnetohydrodynamic waves (I studied high-frequency Alfven waves, or ion cyclotron waves) interact with the lower corona, heating it up.

But which heating mechanism injects the most energy into the corona? For now, although there’s plenty of theorized processes (including these new transient Type II spicules), we don’t really know. We can only observe the solar corona from afar, so getting a true grasp on coronal dynamics is very hard. We really need a probe to dive deep into the solar atmosphere and take a measurement in-situ. Although the planned Solar Probe Plus will provide some answers, it may still be some time before we know why the corona is so hot.

But it is most likely that it’s not one coronal heating mechanism, but a combination of the above and, perhaps, a mechanism we haven’t uncovered yet.

For more on this fascinating research, check out Larry O’Hanlon’s Discovery News article “New Clue May Solve Solar Mystery.”

Compex Magnetic Eruption Witnessed by Solar Observatories

Solar Dynamics Observatory view of the solar disk shortly after eruption (NASA).

This morning, at 08:55 UT, NASA’s Solar Dynamics Observatory (SDO) detected a C3-class flare erupt inside a sunspot cluster. 100,000 kilometers away, deep within the solar atmosphere (the corona), an extended magnetic field filled with cool plasma forming a dark ribbon across the face of the sun (a feature known as a “filament”) erupted at the exact same time.

It seems very likely that both events were connected after a powerful shock wave produced by the flare destabilized the filament, causing the eruption.

A second solar observatory, the Solar and Heliospheric Observatory (SOHO), then spotted a huge coronal mass ejection (CME) blast into space, straight in the direction of Earth. Solar physicists have calculated that this magnetic bubble filled with energetic particles should hit Earth on August 3, so look out for some intense aurorae, a solar storm is on its way…

For more on this impressive solar eruption, read my Discovery News article, “Incoming! The Sun Unleashes CME at Earth

Introducing Little SDO

The Solar Dynamics Observatory (NASA)

Playing on our love for WALL-E, our amazement for the Pixar Lamp and some great animation, Chris Smith, an employee at NASA Goddard Flight Center, has given the upcoming Solar Dynamics Observatory a personality.

Apart from obviously having too much time on his hands, Smith is a very talented guy (as all NASA employees are) and is showing that, once again, the space agency is doing a fantastic job of reaching out to the public.

As proven by the efforts of the Phoenix Mars Lander team in 2008, communication goes a long way and by harnessing social media, NASA can make its missions household names. Phoenix was tweeting, blogging and podcasting to its hearts content for five months, from touchdown to frozen death; it was Big Brother for robots living on Mars.

Now most NASA missions have Twitter feeds and devoted blogs, ensuring everyone’s interest is piqued. It also helps to have a Twitter feed talking in first-person, giving these brave rovers, landers, orbiters and probes a much needed personality.

So now, Chris Smith has done something very cool with the SDO; he’s given it an animated personality in a short animation reminiscent of a movie teaser for an upcoming Disney-Pixar feature film. Behold, the Little SDO:

It’s a really fun little piece,” says Wade Sisler, a television producer for NASA. “And we’re hoping to use it as a way of waking some kids and folks up to solar science.”

And so NASA should, I like it! It’s going to get people interested in a comparatively small mission, and let’s face it, the satellite lacks character (the boxy 4-eyed robot doesn’t do much for me). However, now that Smith has added squeaky solar panel wings, and blinking “eyes” (without changing the design of the craft at all), he’s boosted the SDO’s likeability. Suddenly I care for the little guy. I hope he doesn’t get hit by a solar flare.

Due for launch in October, the SDO will be inserted into a geosynchronous orbit above New Mexico, gathering data from the Sun, so solar physicists can better understand space weather. The cool thing is that with those four eyes, the SDO will capture high-definition images of the Sun continuously.

It might not have the dazzle of the Phoenix Mars Lander, but it has a personality and people will love him (I await the Twitter feed).

Learn more about the Solar Dynamics Observatory »

Source: Wired Science