“Rolling Stones Rock” Is the Coolest Mars Rock That Ever Rolled

The legendary British rock band has been honored by NASA with a rock that the InSight lander rocket-blasted across the Red Planet’s surface last year.

[NASA/JPL-Caltech]

Those of you who frequently read my articles will know that I have a fascination with rolling rocks on celestial bodies. There’s the numerous boulders on the Moon that have been dislodged and rolled down crater sides, leaving their bouncy imprints in the dirt. There’s also the rolling rocks of Ceres. And the theorized rock tracks that are carved into Phobos. Then there’s Mars, the undisputed king of rolling boulders, imaged to beautiful precision by our orbiting armada of spacecraft.

The most famous rolling rock is no boulder, however; it’s barely larger than a golf ball—but it’s now the most famous pebble in the solar system. It’s a little rock that was minding its own business until a car-sized NASA robot rumbled through the Martian skies on Nov. 26, 2018, retro-rockets firing to slow its descent to the ground, that flipped the innocent ruddy bystander three feet (1 meter) from the landing site. It’s sobering to think that that rock probably hasn’t been disturbed for millions of years until that fateful day.

Behold, the “Rolling Stones Rock,” named after rock legends The Rolling Stones and announced tonight by Avengers actor Robert Downey Jr. to tens of thousands of Stones fans at the Rose Bowl Stadium, just before Mick Jagger, Keith Richards, Charlie Watts, Ronnie Wood, and friends rocked Los Angeles to its core. Space exploration doesn’t get much more Hollywood than this:

And a little animated introduction to the rock itself:

“The name Rolling Stones Rock is a perfect fit,” said Lori Glaze, director of NASA’s Planetary Science Division in Washington, in a statement. “Part of NASA’s charter is to share our work with different audiences. When we found out the Stones would be in Pasadena, honoring them seemed like a fun way to reach fans all over the world.”

While, in the grand scheme of things, naming a little rock after The Rolling Stones may not seem like such a big deal (and, besides, it’s an unofficial designation), as my wife and I stood watching the Stones do a blistering performance of “Sympathy For the Devil”, the family next to us were discussing Mars asking what the InSight lander was doing on the Red Planet.

So, mission success, NASA. Mission success.

“Cross-pollinating science and a legendary rock band is always a good thing…”

Robert Downey Jr.

The Rolling Stones and NASA Team Up for Some … Martian Shenanigans?

As the Stones arrive in Los Angeles to continue their No Filter tour, there’s a space-related twist in store at the Rose Bowl Stadium.

It’s been 25 years since the Rolling Stones played at the Rose Bowl Stadium, so SoCal fans of the legendary British rock band are understandably excited. But, for space fans, there’s a little something extra, as actor Robert Downey Jr. teased in a video he posted this morning:

So, what DOES the Rolling Stones, the Rose Bowl, NASA and Robert’s star sign (steady on now) have in common? As he’s an Ares, I’m thinking it’s Mars, a planet that NASA Jet Propulsion Laboratory (which is located near the Rose Bowl) knows more than a thing or two about. And the Stones have a song called “2,000 Light Years From Home”…? OK, I’m reaching a bit on the latter (besides, Mars is much closer to Earth than 2,000 light-years), but there’s definitely something a little Martian going on. Will Curiosity beep a Rolling Stones song from Mount Sharp? Has it got something to do with the upcoming NASA Mars 2020 mission? Will the Mars InSight lander make a cameo? Who knows. But I’m all for melding science with music, so I’m excited.

And I’ll be there to cover the event, so keep an eye on @astroengine on Twitter and Instagram for updates!

I, For One, Welcome Our New Tardigrade Overlords

“One small step for (a) water bear, one giant leap for water-dwelling eight-legged segmented micro-animals.” —Teddy Tardigrade

Tardigrades are everywhere. And now they’re on the Moon [Public Domain]

Are you thinking what I’m thinking? Because if you are, you’re thinking that exposing tardigrades to high-energy cosmic rays can only mean one thing: super-tardigrades. From Live Science:

The Israeli spacecraft Beresheet crashed into the moon during a failed landing attempt on April 11. In doing so, it may have strewn the lunar surface with thousands of dehydrated tardigrades, Wired reported yesterday (Aug. 5). Beresheet was a robotic lander. Though it didn’t transport astronauts, it carried human DNA samples, along with the aforementioned tardigrades and 30 million very small digitized pages of information about human society and culture. However, it’s unknown if the archive — and the water bears — survived the explosive impact when Beresheet crashed, according to Wired.

Mindy Weisberger, Senior Writer

Well, OK, as tough as they are, it’s probably unlikely that those microscopic explorers will re-hydrate any time soon before being hit by high-energy particles that will then endow the tiny guys with Marvel-like superpowers, but it’s nice to dream.

But what are tardigrades? Let’s go back to Mindy’s Live Science article, because her explanation is simply too adorable not to reprint:

Tardigrades, also known as moss piglets, are microscopic creatures measuring between 0.002 and 0.05 inches (0.05 to 1.2 millimeters) long. They have endearingly tubby bodies and eight legs tipped with tiny “hands”; but tardigrades are just as well-known for their near-indestructibility as they are for their unbearable cuteness.

Moss piglets! Or should we now say moon piglets?

Light-hearted tardigiggles aside, it’s hard not to feel sorry for the tiny sleeping creatures. In a dehydrated state, they can remain hibernating (I’m not sure if that’s the correct term for being freeze-dried, but let’s go with hibernating) for a decade (!) while they wait for water to appear so they can go about their tardigradey business. They’ve been discovered in just about every environment on Earth, are extremely resilient and can even survive in space without a tiny spacesuit to keep them warm. In short, they’re pretty amazing. And now they’re on the Moon, which may or may not be a good thing (there’s a lot of cosmic rays up there).

Bonus: I’ll close with a short story:

Ten Years Later: The Cosmos Remembers Brian the Bat

Gather ’round the campfire kids, it’s time to tell the sad story of a brave bat named Brian.

On March 15, 2009, we watched in terror as Brian, a Florida free-tailed bat, stubbornly remained attached to Space Shuttle Discovery’s external fuel tank moments before launch (left). On Thursday, ten years later, the European Southern Observatory released a stunning photo feature of the Bat Nebula (right). A coincidence? I think not. [NASA/ESO]

On March 15, 2009, Twitter was days away from its third birthday, Ashton Kutcher was one month away from becoming the first tweep to reach one million followers, and a community of space enthusiasts habitually live-tweeted the final space shuttle launches from the comfort of their homes. They were simpler times.

Wikipedia recognizes Brian’s sacrifice.

One launch, however, became infamous — nay, historic — not for the fact it was one of the last handful of launches of NASA’s shuttle program, but because there was a tiny stowaway attached to the shuttle’s bulbous orange external fuel tank minutes before ignition.

That stowaway was an ill-fated bat named “Brian.” And “he” became a legend overnight.

A Legend Is Born

During the countdown to the launch of STS-119, as we watched in anticipation of the successful start of Space Shuttle Discovery’s International Space Station (ISS) servicing mission, something seemed amiss at Discovery’s launch pad. At the time, the assumption was that a fruit bat (a common species in Florida) had mistakenly thought the orange external fuel tank of the shuttle was a tree to latch itself onto. Follow-up investigations identified the bat as a free-tailed bat and, though its intentions were unclear, zoologists posited that the unfortunate critter may have broken its wing. This would explain why it didn’t fly away when the shuttle’s boosters ignited, carrying the bat to the heavens — literally and metaphorically.

No one really knows how long the bat held on for, but some creative-thinkers hypothesized that the bat remained attached for the duration, making it into space. I don’t think I have to explain why this didn’t happen — it was more likely booted from the fuel tank in the first seconds of launch enduring a fiery death via rocket booster exhaust — but it was a poetic thought. Regardless of the bat’s fate, it’s ultimate sacrifice made this routine launch special. What was “just another” live-tweeted shuttle launch, became a spectacle that rapidly evolved into an international news story. That bat was special.

And that bat’s name was Brian.

Why “Brian”? A bit of background: For some personal reason that I cannot fathom, I like to name things “Brian.” I’ve always done it. The squirrel that lives in my backyard? Brian. An interesting and unnamed rock on the surface of Mars? Brian. My first car? Brian. That gopher that demolished my newly-planted garden of impatiens in 2011? Brian. A random free-tailed bat hanging off the shuttle’s external fuel tank? Brian. There’s no reason and no logic behind this, Brian just seems to fit. It’s a personal mystery.

So, when lightheartedly tweeting about the bat on March 15, 2009, I called the bat Brian and the name stuck. I had no idea about its gender, and it didn’t have a nametag, but that bat was a Brian alright. Suddenly, other space enthusiasts following the launch called him Brian and, for reasons I have yet to understand ten years later, in those minutes before launch, “Brian the Bat” went viral and suddenly everyone was personally invested in that “routine” space launch. Yes, there were billions of dollars of hardware on that launchpad with seven brave astronauts on board, but everyone was talking about Brian who was shivering on the side of the vehicle, a place that no living creature should have been.

Was Brian confused? Was he frozen to the cold tank? Would he fly away in the nick of time? No one knew, but the clock was ticking and the commentator on the NASA live video stream seemed confident that, as the boosters began their ignition sequence, the bat would be scared by the vibrations and fly to safety.

For reasons known only to Brian, he remained attached. And as the boosters roared to life, he held tight. As the plume of smoke and steam enveloped Kennedy Space Center Launch Complex 39, I sat with the computer screen nearly pressed to my nose, seeking out the dark pixels of Brian in the place where he was last seen. But the resolution was too low and Brian’s fate was unknown. (Days later, NASA analysts reviewed infrared imagery from the launch, revealing two very sad facts. 1) Brian was warm while attached to the fuel tank, so he hadn’t frozen to death and was alive up to launch, and 2) he remained in place when Discovery lifted off.)

As the adrenaline ebbed and Space Shuttle Discovery soared into the atmosphere, solid rocket boosters separating and tumbling back to Earth, the sad reality crept in. Brian was, in all likelihood, toast.

But his legacy would live on.

Assuming that little space-launch chapter was over, I wrote a summary about Brian’s adventures for Universe Today and on Astroengine with the assumption that Brian would be soon lost to the annals of shuttle-era history. Little did I know, however, that Norwegian journalist Geir Barstein was paying close attention…

Brian makes waves in the Norwegian press on March 16, 2009. Read the full article here. [Dagbladet]

Then, a couple of days later, the new spread to the UK tabloid press


Brian landed as a science headline in the Mail Online on March 19, 2009. Read the full article here. [Mail Online]

Brian also made appearances in The Sun newspaper (but the article has since disappeared) and other smaller publications, and I participated in a number of radio shows devoted to that now-famous shuttle launch.

Not only was the whole event a poignant one, it also made me realize something about the power of social media. In all my years covering space stories, particularly when I was a producer at Discovery News (now called “Seeker”), shuttle launches would receive very little attention. Apart from a few outliers, such as the final shuttle launch, the articles I’d publish about one of NASA’s most significant programs would receive very little readership. The routine nature of these launches meant that, unless you were at Cape Canaveral, interest in seeing shuttles launch into space was lukewarm at best. As a space enthusiast, I was frustrated. Every launch in my eyes was special and certainly not “routine.”

Brian, however, made me realize by accident that you have to seek out the unique thing about that one launch that will hook readers to that story. Granted, not all launches have a “Brian the Bat” moment, but that doesn’t mean they’re not special.

Remember the Lunar Atmosphere and Dust Environment Explorer (LADEE) launch? Thought not. But do you remember Frank the Frog? Probably:

NASA’s LADEE launch also had a “Brian the Bat” moment in 2013. Read more about it in my Discovery News analysis. [NASA]

Eerie Timing, ESO

Not only is it the TEN YEAR anniversary tomorrow (Friday) of when Brian met his maker, today the European Southern Observatory (ESO) released this stunning observation of the Bat Nebula, a reflection nebula that contains baby stars being birthed in a stellar nursery. Yes, I know, eerie, right?

Text from ESO: “Hidden in one of the darkest corners of the Orion constellation, this Cosmic Bat is spreading its hazy wings through interstellar space two thousand light-years away. It is illuminated by the young stars nestled in its core — despite being shrouded by opaque clouds of dust, their bright rays still illuminate the nebula. Too dim to be discerned by the naked eye, NGC 1788 reveals its soft colors to ESO’s Very Large Telescope in this image — the most detailed to date.” [ESO]

I like to think that the cosmos is doing Brian a solid by commemorating that brave little bat’s ultimate sacrifice.

The event may have been a footnote in humanity’s quest to explore our universe, but I truly believe that the viral social media (and then mainstream media) attention Brian whipped up created a buzz around a launch that may not have otherwise made an impact.

As a science communicator, I’m always on the lookout for interesting hooks to stories that wouldn’t otherwise be of interest, and on March 15, 2009, Brian was that hook — who knows what kind of impact that little free-tailed bat had on viewers who wouldn’t have otherwise been paying attention to one of the biggest endeavors in human exploration history.

So, tomorrow, on March 15, 2019, raise a drink to Brian’s legacy. He will live on in the spirit he inspired when he left our planet attached to the space shuttle’s external fuel tank.

Gravity and the Dark Side of the Cosmos: LIVE Perimeter Institute Lecture

Streaming LIVE here, today, at 4 p.m. PDT/7 p.m. EDT/11 p.m. GMT

The Perimeter Institute’s public lecture series is back! At 7 p.m. EDT (4 p.m. PDT) today, Erik Verlinde of the University of Amsterdam will ask: Are we standing on the brink of a new scientific revolution that will radically change our views on space, time, and gravity? Specifically, Verlinde will discuss the possibility that gravity may be an emergent phenomena and not a fundamental force of nature. Ohh, interesting.

The Perimeter Institute for Theoretical Physics (in Ontario, Canada) always puts on a superb production and you can watch Dr Verlinde’s talk via the live feed above. You can also participate via social media using the hashtag #piLIVE and follow @perimeter and @erikverlinde on Twitter.

Watch the preview:

Cassini’s Legacy: Enigmatic Enceladus Will Inspire Us for Generations to Come

pia21346-1041
NASA’s Cassini mission captured this view of icy moon Enceladus on March 29, 2017. The crescent is lit by the sun, but the near-side green hue is reflected sunlight bouncing off Saturn’s atmosphere — a.k.a. “Saturn glow” (NASA/JPL-Caltech/Space Science Institute)

The day before Cassini plunged into Saturn’s atmosphere, dramatically ending 13 years of Saturn exploration (and nearly two decades in space), I was sitting on a bench outside the Von Karman Visitor Center on the NASA Jet Propulsion Laboratory campus in La Cañada Flintridge with Linda Spilker, who served as the mission’s project scientist since before Cassini was launched.

What was supposed to be a quick 5-minute chat before lunch, turned into a wonderful 20-minute discussion about Cassini’s discoveries. But it was also about what the spacecraft meant to Spilker and how other space missions have shaped her life.

“I feel very fortunate to be involved with Cassini since the very beginning … and just to be there, to be one of the first to see SOI [Saturn Orbital Insertion] with those first incredible ring pictures,” she told me. “I love being an explorer. I worked on the Voyager mission during the flybys of Jupiter, Saturn, Uranus and Neptune; that sort of whet my appetite and made me want more, to become an explorer to go to the Saturn system.”

Spilker especially loved studying Saturn’s rings, not only from a scientific perspective, but also because they are so beautiful, she continued. “It’s been a heartwarming experience,” she said.

LastRingPortrait_Cassini_1080
Before Cassini crashed into Saturn’s atmosphere, it took a series of observations that created this mosaic of Saturn and its rings. Cassini plunged into the Saturnian atmosphere on Sept. 15 (NASA/JPL-Caltech/Space Science Institute/Mindaugas Macijauskas)

But Cassini’s “legacy discovery,” said Spilker, was the revelation that the tiny icy moon of Enceladus is active, venting water vapor into space from powerful geysers emerging from the moon’s “tiger stripes” — four long fissures in the moon’s south pole. After multiple observations of these geysers and direct sampling of the water particles during flybys, Cassini deduced that the icy space marble hides a warm, salty ocean.

“What Cassini will be remembered for — its legacy discovery — will be the geysers coming from Enceladus with the ocean with the potential for life. It’s a paradigm shift.” — Linda J. Spilker, Cassini project scientist, NASA Jet Propulsion Laboratory (JPL), Sept. 14, 2017.

Alongside Jupiter’s moon Europa, Enceladus has become a prime destination for future explorations of life beyond Earth. Its subsurface ocean contains all the ingredients for life as we know it and Cassini was the mission that inadvertently discovered its biological potential. So now we know about this potential, Spilker is keen to see a dedicated life-hunting mission that could go to Enceladus, perhaps even landing on the surface to return samples to Earth.

cassini-geysers
Artist impression of Cassini flying through Enceladus’ water plumes venting from the moon’s south pole (NASA/JPL-Caltech)

As Enceladus is much smaller and less massive than Europa, its gravity is lower, meaning that landing on the surface is an easier task. Also, the radiation surrounding Saturn is much less aggressive than Jupiter’s radiation belts, meaning less radiation shielding is needed for spacecraft going to Saturn’s moons.

But if we ever send a surface mission to Enceladus (or any of the icy moons in the outer solar system), the planetary protection requirements will be extreme.

“If any life were found on these moons, it would be microbial,” said Larry Soderblom, an interdisciplinary scientist on the Cassini mission. “Some [terrestrial] bacteria are very resilient and can survive in hot acid-reducing environments. They can be tenacious. We have to make sure we don’t leave any of these kinds of Earthly bacteria on these promising moons.”

Soderblom has a unique perspective on solar system exploration. His career spans a huge number of NASA missions since the 1960’s, including Mariner 6, 7, 9, Viking, Voyager, Galileo, Magellan, Mars Pathfinder, the Mars Exploration Rovers, Deep Space 1, to name a few. While chatting to me under the shade of a tree on the JPL campus, he pointed out that the outer solar system was seen as a very different place over half a century ago.

“When I started to explore the solar system as a young guy just out of graduate school, our minds-eye view of the outer solar system was pretty bleak,” he remembered. “We expected lifeless, dead, battered moons with no geologic activity.”

After being involved with many outer solar system missions, this view has radically changed. Not only have we discovered entire oceans on Enceladus and Europa, there’s active volcanoes on Jupiter’s tortured moon Io, an atmosphere on Titan sporting its own methane cycle and surface lakes of methane and ethane. Other moons show hints of extensive subsurface oceans too, including distant Triton, a moon of Neptune. When NASA’s New Horizons flew past Pluto in 2015, the robotic spacecraft didn’t see a barren, dull rock as all the artistic impressions that came before seemed to suggest. The dwarf planet is a surprisingly dynamic place with a rich geologic history.

pia12713
With a diameter of only 313 miles, tiny Enceladus is a surprising powerhouse of internal activity. Subsurface oceans are heated through tidal interactions with Saturn (and, possibly, radioactivity in its rocky core), forcing water through its south pole fissures (NASA/JPL-Caltech)

Sending our robotic emissaries to these distant and unforgiving places has revolutionized our understanding of the solar system and our place in it. Rather than the gas and ice giant moons being dull, barren and static, our exploration has revealed a rich bounty of geologic variety. Not only that, we’re almost spoilt for choices for our next giant leap of scientific discovery.

Missions like Cassini are essential for science. Before that spacecraft entered Saturn orbit 13 years ago, we had a very limited understanding of what the Saturnian system was all about. Now we can confidently say that there’s a tiny moon there with incredible biological potential — Enceladus truly is Cassini’s legacy discovery that will keep our imaginations alive until we land on the ice to explore its alien ocean.

For more on my trip to JPL, read my two HowStuffWorks articles:

Why Cassini Crashed: Protecting Icy Moon Enceladus at All Costs

What Epic Space Missions Like Cassini Teach Us About Ourselves

Alien vs. Comet: Is the SETI “Wow!” Signal Dead? (Astroengine Video)

There’s a new hypothesis about what happened on August 15, 1977, and, sadly, it doesn’t involve aliens — just a photobombing comet. I was surprised about the controversy surrounding Antonio Paris’ research into the possibility of comets generating radio signals at 1420MHz and mimicking the famous “Wow!” signal nearly 40 years ago, so I decided to record Astroengine’s second YouTube video on the topic. Enjoy! And remember to subscribe and like, there’s a lot more to come!

When Black Holes Collide… Astroengine Is Now On YouTube!

So… it begins!

Astroengine has finally been launched on YouTube, kicking off with a summary of the recent gravitational wave discovery by LIGO. I’m aiming to produce at least one video a week and I’d really like to make it as viewer-driven as possible. So if you have any burning space science questions or any critique about the videos I’m posting, please reach out!

But for now, you know what to do: like, subscribe and enjoy!

“It Seems Highly Unlikely There’s Just Us” — Iain M. Banks’ Final Interview

iain-banks-consider-phlebas-e13541393786721
Cover art for Iain M. Banks’ “Consider Phlebas”

In 2013, when I heard that Iain M. Banks had passed away at the tragically young age of 59, I was devastated. As I wrote at the time, it’s always hard when a person who inspired you in life dies. But in the years since Banks’ death of terminal cancer, I’ve spent more time reading and re-reading his science fiction works, somehow uncovering new detail and surprises in each chapter. His epic Culture series is as impactful now as it was when he wrote his 1987 novel “Consider Phlebas.”

I’ve also been researching the man himself, learning about his motivations, political opinions and religious beliefs (or lack thereof) to find we share many of the same views about the state of the world. And recently, I came across his final “Raw Spirit” interview with Kirsty Wark of BBC Scotland that he did in the weeks before he died.

The interview is excellent and well worth the watch.

One discussion I found particularly poignant was at around the 35 minute mark when Kirsty asks Iain about his views on life elsewhere in the universe:

Iain M. Banks
Iain M. Banks

There’s so many stars in the galaxy and there are so many galaxies … it seems highly unlikely there’s just us. It’s one of the things that I regret a great deal is that I’m not going to live long enough to see the results come in from the really good telescopes that we’re putting in space, in particular. They’ll actually be able to analyze the composition of exoplanets, their atmospheres, and be able to tell whether they’ve got life in them. You know exactly what the spectrum is of the star, as the star starts to slip behind the planet, the way the spectrum alters … will tell you how much carbon, how much oxygen, carbon dioxide and so on is in the atmosphere of that planet. It’s astounding to think we might know this in 10, 20 years. Yeah. It’s damned annoying! (laughs)

Iain’s views on life elsewhere in the universe are hardly surprising, especially considering all the alien civilizations he’d created through his decades of writing. And his point about detecting chemicals in exoplanetary atmospheres is rooted very firmly in science fact. I can’t begin to imagine his annoyance at knowing we’re only years away from probing alien atmospheres when his life was almost up. (For added poignancy, Iain hints that he has months left to live, but as indicated at the start of the interview, it turned out he was in his final weeks.)

I found Iain’s humor and energy inspiring in life, and despite facing his imminent mortality during this interview, he delivered some thought-provoking ideas and views with grace that will live on well beyond his death.

Watch the BBC Scotland interview here:

Astroengine Roundup: Time Machines, Stealth Solar Eruptions, Comet Oxygen

As I freelance for other websites, I thought I’d begin posting links and summaries here on a quasi-regular basis so you can keep up with the other space stuff I write about. So, to kick off the Astroengine Roundup, here you go:

Using TARDIS to Mathematically Travel Through Time (HowStuffWorks.com)

time-travel
HowStuffWorks

Ever since H. G. Wells wrote “The Time Machine” in 1895, we’ve been fascinated with the possibility of magically bouncing around through history. But it wasn’t until Einstein published his historic theory of general relativity that scientists (and science fiction writers) realized that time wasn’t necessarily as ridged as classical theories predicted. After a thought-provoking chat with general relativity expert Ben Tippett, of the University of British Columbia, I was able to get the lowdown on his mathematical model of a time machine called… TARDIS.

Comets Are Oxygen Factories (HowStuffWorks.com)

comet
ESA

When Europe’s Rosetta mission discovered molecular oxygen venting from comet 67P/Churyumov-Gerasimenko in 2015, scientists were weirded out. In space, molecular oxygen (O2, i.e. the stuff we breathe) is highly reactive and will break down very quickly. The working theory was that the O2 had been locked in the comet’s ices for billions of years since the solar system’s earliest moments, but new research suggests that 67P is actually producing its own O2 right this moment from a complex interplay between the venting water molecules and chemicals on the comet’s surface. Yes, comets are therefore molecular oxygen factories.

Not So Fast: Magnetic Mystery of Sun’s ‘Stealth’ Eruptions Uncovered (SPACE.com)

stealthcme2a
NASA’s Goddard Space Flight Center/ARMS/Joy Ng

Coronal mass ejections, or CMEs, are the most dramatic eruptions that our sun can produce. If they are Earth-directed, these magnetized bubbles of superheated plasma can cause all kinds of issues for our high-technology civilization. Usually, space weather forecasters do a great job of at least predicting when these eruptions might be triggered in the sun’s lower corona, but there’s a different type of CME — the so-called “stealth” CME — that appears to come out of nowhere, created by the complex interplay of magnetic fields high in the sun’s atmosphere.

NASA Competitions (SPACE.com: 1, 2)

level1cylinder_plastic_and_dust

There’s been a couple of updates from NASA challenges and competitions these last few days. The first was the announcement of the High Performance Fast Computing Challenge (HPFCC), which challenges coders with some time on their hands to better optimize supercomputer software for NASA’s simulations of aeronautics models. The second was the announcement of the first winners of Phase 2 of NASA’s 3D-Printed Habitat Challenge — a competition that hopes to pull in talent from a range of backgrounds to ultimately develop the technology to 3D print habitats on Mars and beyond.

~Ad astra