Cassini Says “Ciao!” to Pan, Saturn’s Ravioli Moon

Never before has a space probe come so close to the pint-sized moon embedded in Saturn’s rings — and when NASA’s Cassini buzzed Pan, the spacecraft revealed what a strange moon it really is.

NASA/JPL-Caltech/Space Science Institute

This is Pan, a 22 mile-wide moon that scoots through Saturn’s rings, orbiting the gas giant once every 13.8 hours. And it’s weird.

Resembling a giant ravioli or some kind of “flying saucer” from a classic alien invasion sci-fi comic, Pan is known as a “shepherd moon” occupying the so-called Encke Gap inside Saturn’s A Ring. This gap is largely free of particles and it has become Pan’s job to hoover up any stray material — the moon’s slight gravity pulls particles onto its surface and scatters others back out into the ring system. This gravitational disturbance creates waves that ripple through the ring material, propagating for hundreds of miles.

On March 7, NASA’s Cassini mission came within 15,268 miles of Pan, revealing incredible detail in the moon’s strange surface. It’s thought that its characteristic equatorial ridge (a trait it shares with another Saturn moon Atlas) is caused by the gradual accumulation of ring material throughout the moon’s formation and with these new observations, scientists will be able to better understand how Pan came to be.

NASA/JPL-Caltech/Space Science Institute

As Cassini rapidly approaches the end of its mission, eventually orbiting through Saturn’s ring plane as a part of its “Grand Finale,” we can expect more of these striking views from orbit before the veteran probe is steered into Saturn’s atmosphere in September, bringing its historic mission to an end.

Advertisements

Can We Call the Bright Spot in Ceres’ Occator Crater a Cryovolcano Yet?

Evidence is mounting around the cryovolcanic history of the solar system’s innermost dwarf planet — and its most recent eruptions may have happened within the last four million years.

NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Since NASA’s Dawn mission arrived at dwarf planet Ceres in 2015, we’ve been treated to some wonderfully detailed images of the small world’s pockmarked terrain. Understanding the underlying processes of what is believed to be an ice-filled celestial body, however, is taking some time to decipher. But with more observations comes more understanding and planetary scientists are getting close to realizing what lies beneath those craters and, possibly, unlocking the secrets behind a very icy and very alien phenomenon we have no experience of in our terrestrial lives.

That phenomenon is cryovolcanoes. And Ceres seems to have them.

The most startling feature on Ceres is Occator Crater. This 57 mile-wide feature is the result of a massive impact tens of millions of years ago. Large craters on small worlds isn’t necessarily a strange thing in our battered solar system, but what is strange about Occator is the very bright feature (and small bright patches surrounding it) in the crater’s center. Even before Dawn arrived in orbit and only fuzzy images of Ceres were available, hopes were high that this bright anomaly in the otherwise gray Cererian landscape could be indicative of ices or some mineral compound that was formed by the presence of water.

There have been many studies into Occator’s icy center, but new research into the crater’s age compared to the bright spot’s age appears to, once again, point to a cryovolcanic origin.

Cryovolcanoes — or, simply, ice volcanoes — are hypothetical features that are believed to be common throughout the outer solar system. These ice volcanoes are thought to erupt in a similar fashion to the volcanoes we have on Earth, but instead of molten rock, these volcanoes erupt ice-cold volatiles — like water, methane or ammonia. Dwarf planet Pluto, for example, has features that look like cryovolcanoes, as does Saturn’s moon Titan and Jupiter’s moon Ganymede. These locations are extremely cold and known to contain large quantities of methane and water, so internal heating (caused by radioactive decay or tidal processes) melt the ices and force them to the surface. When they vent through the crust, gases are released and the liquids quickly freeze and sublimate.

Around these vents, cryovolcanoes will grow, and if Ceres really does have its own ice volcanoes, this will be the closest planetary body to the sun (and Earth) known to have them.

Now, in research headed by the Max Planck Institute for Solar System Research (MPS) in Göttingen, Germany, scientists using Dawn data have, for the first time, taken a stab at dating the age of the bright material in the center of Occator Crater and realized that the location has likely been the site of many cryovolcanic eruptions in the recent past.

Occator Crater as observed by NASA’s Dawn spacecraft (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

In the center of Occator, a pit measuring around 7 miles wide can be found, likely formed during the massive impact approximately 30 million years ago. But around the edges of that pit are mountains, some 750 meters high, and in the center is a cracked dome measuring 400 meters high and nearly 2 miles wide. This bright dome is called Cerealia Facula and surrounding it appears to be material that was spewed from a cryovolcanic vent. Analysis has shown that this material contains salts that were formed in the presence of water from Ceres’ interior and then deposited onto the surface. The minerals around Cerealia Facula has been dated to only four million years, meaning that there has been cryovolcanic eruptions long after the Occator impact punctured Ceres’ crust.

“The age and appearance of the material surrounding the bright dome indicate that Cerealia Facula was formed by a recurring, eruptive process, which also hurled material into more outward regions of the central pit,” said Andreas Nathues, lead investigator of Dawn’s Framing Camera. “A single eruptive event is rather unlikely.” As noted in an MPS news release, Jupiter moons Callisto and Ganymede have similar features that are also believed to be related to cryovolcanic eruptions.

“The large impact that tore the giant Occator crater into the surface of the dwarf planet must have originally started everything and triggered the later cryovolcanic activity,” added Nathues.

Previous imagery of haze inside Occator Crater has led to the suspicion that ices remain on the surface today; the haze could be vapor from sublimating water ice exposed on the surface having been forced to the surface from Ceres’ interior. Evidence for this haze has been supported by other studies and appears to vary throughout the day as one would expect — increased sunlight would accelerate sublimation (ice turning from a solid to a vapor without passing through the liquid phase).

If volatiles are still being extruded through this vent today, this would seem to indicate that, in addition to the cryovolcanic eruptions in the last four million years, some form of activity continues to this day. Add this to the recent discovery of organic material on Ceres’ surface, this small world has become a very big asset for planetary science.

For more on Ceres’ icy eruptions, check out one of my last DNews videos:

Mars’ Ancient Mega-Floods Are Still Etched Into the Red Planet

Around 3.5 billion years ago — when basic life was just gaining a foothold on Earth — the Tharsis region on Mars was swamped with vast floods that scar the landscape to this day.

perspective_view_towards_worcester_crater
Rendered perspective view of Worcester Crater using Mars Express elevation data. The dramatic crater rim was carved by the flow of ancient floodwater (ESA)

Mars wears its geological history like a badge of honor — ancient craters remain unchanged for hundreds of millions of years and long-extinct volcanoes look as if they were venting only yesterday. This is the nature of Mars’ thin, cold atmosphere; erosional processes that rapidly delete Earth’s geological history are largely absent on the Red Planet, creating a smorgasbord of features that provide planetary scientists with an open book on Mars’ ancient past.

In this latest observation from the European Mars Express mission, a flood of biblical proportions has been captured in all its glory. But this flood didn’t happen recently, this flood engulfed a vast plain to the north of the famous Valles Marineris region billions of years ago.

It is believed that a series of volcanic eruptions and tectonic upheavals in the Tharsis region caused several massive groundwater releases from Echus Chasma, a collection of valleys some 100 kilometers (62 miles) long and up to 4 kilometers (2.5 miles) deep. These powerful bursts of water carved vast outflow channels into the adjacent Lunae Planum, contributing to the formation of the Kasei Valles outflow channels, releasing water into the vast Chryse Planitia plains which acted as a “sink.” Smaller “dendritic” channels can be seen throughout the plain, indicating that there were likely many episodic bursts of water flooding the region.

This context image shows a region of Mars where Kasei Vallis empties into the vast Chryse Planitia (NASA MGS MOLA Science Team)
This context image shows a region of Mars where Kasei Vallis empties into the vast Chryse Planitia (NASA MGS MOLA Science Team)

These floods happened between 3.4 to 3.6 billion years ago, less than a billion years after the most basic lifeforms started to appear on Earth (a period of time known as the Paleoarchean era).

In the middle of what was likely a powerful, vast and turbulent flows of water is Worcester Crater that was created before the Tharsis floods and, though its crater rim stands to this day and retains its shape, it was obviously affected by the flow of water, with a “tail” of sediment downstream.

ESA Mars Express observation of the mouth of Kasei Valles, as it transitions into Chryse Planitia. The large crater in the lower left is Worcester Crater. (ESA/DLR/FU Berlin)
ESA Mars Express observation of the mouth of Kasei Valles, as it transitions into Chryse Planitia. The large crater in the lower left is Worcester Crater (ESA/DLR/FU Berlin)

Also of note are smaller “fresh” craters that would have appeared long after the flooding took place, excavating the otherwise smooth outflow channels. These younger craters have tails that seem to be pointed in the opposite direction of the flow of water. These tails weren’t caused by the flow of water, but by the prevailing wind direction.

From orbital observations by our armada of Mars missions, it is well known that these channels contain clays and other minerals associated with the long-term presence of water. Although the Red Planet is now a very dry place, as these beautiful Mars Express images show, this certainly hasn’t always been the case.

On Mars, There’s No Asphalt

Curiosity's right-middle and rear wheels, bearing the scars of 488 sols of rough roving. Credit: NASA/JPL-Caltech
Curiosity’s right-middle and rear wheels, bearing the scars of 488 sols of rough roving. Credit: NASA/JPL-Caltech

If you’re like me, you hang off every news release and new photo from our tenacious Mars rover Curiosity. The awesome one-ton, six-wheeled robot is, after all, exploring a very alien landscape. But if there’s one thing I’ve learned from the mission, Mars is far from being a truly alien place. Sure, we can’t breath the thin frigid air, but we can certainly recognize similar geological processes that we have on Earth, and, most intriguingly, regions that would have once been habitable for life as we know it. This doesn’t mean there was life, just that once upon a time parts of Gale Crater would have been pretty cozy for terrestrial microbes. Personally, I find that notion fascinating.

But, way back in May, I noticed something awry with our beloved rover’s wheels. Curiosity’s beautiful aircraft-grade aluminum wheels were looking rather beaten up. Punctures had appeared. Fearing the worst I reached out to NASA to find out what was going on. After a friendly email exchange with lead rover driver Matt Heverly, I felt a lot more at ease: The damage was predicted; dings, scratches, even holes were expected to appear in the thinnest (0.75 mm thick) aluminum between the treads. On Mars, after all, there is no asphalt. Also, erosion is a slower-paced affair in the thin winds and dry environment — sharp, fractured rocks protrude, embedding themselves into the wheels at every slow turn.

Then, on Friday, in a news update on Curiosity’s progress, JPL scientists mentioned that they would be commanding the rover to drive over a comparatively smooth patch to evaluate the condition of the wheels as their condition is getting worse. But isn’t that to be expected? Apparently not to this degree. “Dents and holes were anticipated, but the amount of wear appears to have accelerated in the past month or so,” said Jim Erickson, project manager for the NASA Mars Science Laboratory at NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

So what are we looking at here?

curiosity-wheels-08-670x440-131220

All of the wheels are exhibiting wear and tear, but this particular ‘rip’ in aluminum is by far the most dramatic. But what does that mean for Curiosity? We’ll have to wait and see once JPL engineers have assessed their condition. Although this kind of damage has inevitably been worked into the the structural equations for the wheels’ load-bearing capabilities, whichever way you look at it, damage like this is not good — especially as Curiosity hasn’t even roved three miles yet.

But in the spirit of Mars exploration, Curiosity will soldier on regardless of how rough the red planet treats her.

Read more in my coverage on Discovery News, a location you’ll find me during most daylight (and many nighttime) hours:

Curiosity Obsessing: Odd Mars Rock in Gale Crater

Panorama mosaic taken by Curiosity's Mastcam on Sol 413 of its mission inside Gale Crater. Credit: NASA/JPL-Caltech/MSSS
Panorama mosaic taken by Curiosity’s Mastcam on Sol 413 of its mission inside Gale Crater. Credit: NASA/JPL-Caltech/MSSS, edit by Ian O’Neill

As NASA has been shuttered by the insane U.S. government shutdown, there’s been little in the way of news releases from NASA (site offline) or NASA’s Jet Propulsion Laboratory (site still online, but no recent updates posted). In this Mars Science Laboratory science lull, I’ve found myself obsessively trawling the mission’s raw image archive so I can get my fix of high-resolution imagery from Curiosity’s ongoing mission inside Gale Crater.

While getting lost in the Martian landscape once more, I started tinkering with Curiosity’s raw photos; zooming in, adjusting the contrast, brightness and color. One thing led to another and I found myself stitching together various photos from the rover’s Mastcam camera. Being awash with photographs with little professional insight from mission scientists (as, you know, a noisy minority at Capitol Hill has gagged them by starving the agency of funds), I started to tinker in Photoshop, blindly trying to stitch a selection of Mastcam photos together to see an updated Martian panorama once more. This is the result.

Of particular interest, I found myself staring at the precariously-shaped boulder to the far right of the panorama. I can only guess what geological processes shaped it that way — Wind action? Ancient water flow? — or whether it had simply landed that way after getting blasted from an impact crater, but I was curious as to what JPL mission scientists are making of it. Alas, we’ll have to wait a little longer for the awesome Mars science to begin flowing again.

Here’s that rock:

curiosity-pano-mastcam-sol-413-131009-ins

It felt nice to be absorbed in the Mars landscape again. The photo stitching is rough in places (by far the hardest task was getting the brightness and contrast correct in each photo) and I lack any calibration tools to ensure the color is correct or that the orientation is sound, but it satisfied my curiosity as to what Curiosity was up to on the Red Planet. It has, after all, been over a year since the historic landing of the NASA mission and the regular news updates from NASA and JPL have become something of an intellectual opiate.

Going cold turkey, apparently, makes a space blogger itchy.

Image sources (from left to right):
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707000000E1_DXXX&s=413
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707001000E1_DXXX&s=413
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707002000E1_DXXX&s=413
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707003000E1_DXXX&s=413
http://mars.jpl.nasa.gov/msl/multimedia/raw/?rawid=0413ML1707004000E1_DXXX&s=413

Colonists Beware: Don’t Camp at the Bottom of Martian Hills!

Trails of Mars rocks that have rolled down the slope of a crater rim as imaged by the HiRISE camera. Credit: NASA/JPL/Univ. of Arizona.
Trails of Mars rocks that have rolled down the slope of a crater rim as imaged by the HiRISE camera. Credit: NASA/JPL/Univ. of Arizona.

It’s always fascinating to see evidence of active geological processes on Mars. And with the help of the armada of robots in orbit and roving the Red Planet, there are plenty of opportunities to see the planet in action.

Take this recent image from the High-Resolution Imaging Science Experiment (HiRISE) camera aboard NASA’s Mars Reconnaissance Orbiter (MRO) for example. In this striking scene — which is a little over one kilometer wide — the bright trails of rocks that have rolled down a sloping crater rim after being dislodged from the top are visible from space. The rocks have obviously bounced on their way, leaving dotted impressions as they rolled. Some have reared in wide arcs, following the topography of the landscape. Others have hit other rocks on their way down, dislodging them, creating secondary cascades of smaller boulders.

“The many boulder tracks in this image all seem to emanate from a small alcove near the rim of the crater,” describes HiRISE Targeting Specialist Nicole Baugh. “They spread out downslope and finally terminate near the crater floor. A high-contrast stretch of the area where the tracks stop shows lots of boulders, some still at the ends of the tracks.”

A rough estimate from the high-resolution imagery suggests some of these Mars boulders are over a meter wide. Future Mars astronauts beware: don’t camp out at the bottom of Martian hills! There’s no vegetation to hold big rocks in place or slow their speed. As previous observations of Mars “avalanches” suggest, weathering through the expansion of water ice (frost action) and/or rapid vaporization of carbon dioxide ice likely trigger pretty extreme downfalls of debris. It would be a bummer to travel all the way to Mars, survive the ravages of solar radiation, a daring descent and landing only to get flattened by a wayward chunk of rock when you set up camp.

I’ve always had a special joy for surveying HiRISE observations; it’s a very privileged window to this alien landscape that, in actuality, has many similar geological processes we find on Earth. And so here we have a collection of boulders that, somehow, became dislodged and stormed down from the rim of a crater. If we saw such an event in person, we might note the unnatural bounce these boulders have in the roughly one-third Earth gravity. But we’d also have to find shelter fast, as just like rolling boulders on Earth, those things will flatten you.

About Those ‘Habitable’ Exoplanets (RT America Interview)

On Monday, I appeared on RT America’s live news broadcast to talk exoplanets — particularly the three small (possibly rocky) worlds that orbit the stars Kepler-62 and Kepler-69. It was a lot of fun discussing ‘Goldilocks Zones’ and the possibilities of extraterrestrials. Enjoy!

Discovery News coverage of Kepler-62:

Big AGU Announcements: Curiosity Team May Not, But What About Voyager 1? (Update)

A view from Curiosity's front hazcam of the sandy Mars soil the rover scooped samples of for analysis by its SAM instrument (NASA/JPL-Caltech)
A view from Curiosity’s front hazcam of the sandy Mars soil the rover scooped samples of for analysis by its SAM instrument (NASA/JPL-Caltech)

UPDATE 2: So it turns out that Curiosity does have data to suggest that organics and perchlorates may be present in the Mars soil. As NASA keeps reminding us, this is not “proof” of organics, it’s “promising data.” Regardless, the media has made up their own mind as to what it means. As for Voyager 1, my speculation that it has left the solar system wasn’t quite correct… close, but she hasn’t left the heliosphere, yet.

UPDATE 1: That whole thing I said in my Al Jazeera English op-ed about being blinkered on the organics explanation for the “big” news on Monday? Well, case in point, as tweeted by @MarsToday on Sunday night, perhaps Curiosity has discovered further evidence for perchlorates on Mars. I have no clue where this information is sourced, and I’m not going to speculate any more, but if perchlorates have been discovered in Gale Crater, it would support the findings of NASA’s 2008 Mars Phoenix lander findings of perchlorate and possible liquid water brine in the arctic regions of the Red Planet. Place your bets…

Over the last bizarre few days, a key NASA scientist (almost) spilled the beans on a “historic” discovery by the Mars Science Laboratory (MSL) rover Curiosity. Then, speculation ran wild. Had NASA’s newest Mars surface mission discovered organics? Feeling the need to stamp out the glowing embers of organic excitement ahead of the Dec. 3 AGU press conference, NASA said that there would be no big announcement on Monday. But then the agency went even further, issuing a terse statement to point out that the speculation is wrong. “At this point in the mission, the instruments on the rover have not detected any definitive evidence of Martian organics,” said NASA.

So now we’re left, understandably, wondering what lead MSL scientist John Grotzinger was referring to. I think it’s safe to assume that he wasn’t misquoted by the NPR journalist who happened to be sitting in his office when the MSL team was receiving data from the mission’s Sample Analysis at Mars (SAM) instrument. And if we take NASA’s damage-controlling statements at face value, Grotzinger was just getting excited for all the data being received from the rover — after all, the entire mission is historic.

As a science media guy with a background in science, I totally ‘get’ what the MSL team are going through. Scientists are only human and whether or not Grotzinger was getting excited for a specific “historic” find or just getting generally excited for all the “historic” data streaming from the rover, is irrelevant. Perhaps he should have been more careful as to the language he used when having an NPR reporter sitting in the same room as him, but that’s academic, I’m pretty sure that if I was leading the most awesome Mars mission in the history of Mars missions I’d be brimming over with excitement too. The scientific process is long and can often seem labored and secretive to the media and public — rumors or a few slipped words from scientists is often all that’s needed to spawn the hype. But for the scientific process to see its course, data needs to be analyzed, re-analyzed and theories need to be formulated. In an announcement as important as “organics on Mars,” the science needs to be watertight.

However, I can’t help but feel that, in NASA’s enthusiasm to “keep the lid” on speculation, that they are setting themselves up for a backlash on Monday.

If the AGU press conference is just “an update about first use of the rover’s full array of analytical instruments to investigate a drift of sandy soil,” as the NASA statement says, won’t there be any mention of organics? Will this be a similar announcement to the sampling of Mars air in the search for methane? The upshot of that Nov. 2 press conference was that the Mars air had been tested by SAM and no methane (within experimental limits) had been discovered… yet. But this was a sideline to the announcement of some incredible science as to the evolution of the Martian atmosphere.

This time, although there may not be “definitive,” absolute, watertight proof of organics, might mission scientists announce the detection of something that appears to be organics… “but more work is needed”? It’s a Catch 22: It’s not the “historic” news as the experiment is ongoing pending a rock-solid conclusion; yet it IS “historic” as the mere hint of a detection would bolster the organics experiments of the Viking landers in the 1970s and could hint at the discovery of another piece of the “Mars life puzzle.” And besides, everything Curiosity does is “historic.”

In NASA’s haste to damper speculation, have they cornered themselves into not making any big announcements on Monday? Or have they only added to the speculation, bolstering the media’s attention? Besides, I get the feeling that the media will see any announcement as a “big” announcement regardless of NASA scientists’ intent. Either way, it’s a shame that the hype may distract from the incredible science the MSL team are carrying out every single day.

For more on “Organicsgate,” read my Al Jazeera English op-ed Mars organics speculation butts heads with scientific process.”

Meanwhile, in deep space, a little probe launched 35 years ago is edging into the interstellar medium and NASA’s Voyager Program team are also holding an AGU press conference on Monday. Although there have been no NPR journalists getting the scoop from mission scientists, it’s worth keeping in mind that Voyager 1 really is about to make history. In October, I reported that the particle detectors aboard the aging spacecraft detected something weird in the outermost reaches of the Solar System. As Voyager 1 ventures deep into the heliosheith — the outermost component of the heliosphere (the Sun’s sphere of influence) — it detected inexplicable high-energy particles. The theory is that these particles are being accelerated by the magnetic mess that is the outermost reaches of the Solar System. But there is growing evidence in particle detections and magnetometer readings that the probe may have just left the Solar System, completely escaping the heliosphere.

A big hint is in the following graphs of data streaming from Voyager 1. The first plot shows the increase in high-energy cosmic ray particle counts. These high-energy particles typically originate from beyond the heliosphere. The bottom plot shows lower-energy particles that originate from the solar wind. Note how the lower-energy particle counts fell off a cliff this summer, and how the high-energy particles have seen a marked increase at around the same period:

High-energy cosmic ray count as detected by Voyager 1. Credit: NASA
High-energy cosmic ray count as detected by Voyager 1. Credit: NASA
Low-energy cosmic ray count as detected by Voyager 1. Credit: NASA
Low-energy cosmic ray count as detected by Voyager 1. Credit: NASA

So, in light of the media-centric Curiosity debate over what is “historic” and what’s not “historic” enough to be announced at conferences, I’m getting increasingly excited for what the Voyager team have got to say tomorrow. It’s inevitable that Voyager 1 will leave the Solar System, but will NASA call it at the AGU? Who knows, but that would be historic, just without the hype.

A Martian Storm Is Brewing

This nearly global mosaic of observations made by the Mars Color Imager on NASA's Mars Reconnaissance Orbiter on Nov. 18, 2012, shows a dust storm in Mars' southern hemisphere. Credit: NASA
This nearly global mosaic of observations made by the Mars Color Imager on NASA’s Mars Reconnaissance Orbiter on Nov. 18, 2012, shows a dust storm in Mars’ southern hemisphere. Credit: NASA

As the sols march on, NASA’s brand new nuclear-powered rover Curiosity has detected a dramatic change in its surrounding atmosphere. A once-clear vista of the distant rim of Gale Crater now looks smoggy — almost like the gray-brown-yellow stuff that hangs above Los Angeles on a hot summer’s day. So what’s causing this change in opacity?

As can be seen in the above global view of Mars, NASA’s Mars Reconnaissance Orbiter took a near-continuous observation of the planet on Nov. 18 with its Mars Color Imager. The mosaic has picked out an assortment of geographical features, but there’s one rather ominous atmospheric feature (white arrows) that grabbed the attention of Malin Space Science Systems’ Bruce Cantor.

A regional dust storm is brewing and Cantor first observed the storm on Nov. 10. He reported the detection to NASA’s Mars Exploration Rover team who manage Opportunity. Although the storm is over 800 miles from the tenacious rover, dust storms are of a concern for any solar powered surface mission, especially for a rover that has outlived its expected mission lifetime by several years. Opportunity’s solar panels are already covered in dust, so should there be an additional dip in sunlight due to a dusty atmosphere there could be an impact on its mission. Additional dust layers on the panels wouldn’t help either.

Opportunity does not have a weather station, but its cameras have detected a slight drop in atmospheric clarity. Curiosity, on the other hand, does have a weather station — called the Rover Environmental Monitoring Station (REMS) — and has been closely monitoring the atmospheric variability over the last few days, detecting a decreased air pressure and a slight rise in overnight low temperature. This is in addition to the dramatic loss in visibility. In short, it sounds like Curiosity can sense a storm in the air.

With the help of Emily Lakdawalla over at the Planetary Society, a nifty animation by Egorov Vitaly that highlights the change in visibility has been showcased:

Six Navcam images pointed toward the horizon taken over the course of Curiosity's time near Rocknest document changes in the transparency of the atmosphere.  NASA / JPL / Egorov Vitaly ("Zelenyikot")
Six Navcam images pointed toward the horizon taken over the course of Curiosity’s time near Rocknest document changes in the transparency of the atmosphere. NASA/JPL/ Egorov Vitaly (“Zelenyikot”)

“This is now a regional dust storm. It has covered a fairly extensive region with its dust haze, and it is in a part of the planet where some regional storms in the past have grown into global dust hazes,” said Rich Zurek, chief Mars scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “For the first time since the Viking missions of the 1970s, we are studying a regional dust storm both from orbit and with a weather station on the surface.”

Now this is the cool bit. We currently have an armada of Mars orbiters, plus two generations of Mars rovers doing groundbreaking work on opposite sides of the red planet. We are in an unprecedented age of planetary exploration where a network of robots all work in concert to aid our understanding of how the planet works. In this case, local weather changes are being observed around two surface missions while corroborating data is being gathered hundreds of miles overhead.

From the NASA JPL press release:

Starting on Nov. 16, the Mars Climate Sounder instrument on the Mars Reconnaissance Orbiter detected a warming of the atmosphere at about 16 miles (25 kilometers) above the storm. Since then, the atmosphere in the region has warmed by about 45 degrees Fahrenheit (25 degrees Celsius). This is due to the dust absorbing sunlight at that height, so it indicates the dust is being lofted well above the surface and the winds are starting to create a dust haze over a broad region.

Warmer temperatures are seen not only in the dustier atmosphere in the south, but also in a hot spot near northern polar latitudes due to changes in the atmospheric circulation. Similar changes affect the pressure measured by Curiosity even though the dust haze is still far away.

We’re monitoring weather on another planet people! If that’s not mind-blowing, I don’t know what is.

Note: Apologies for the Astroengine.com hiatus, I’ve been somewhat distracted with writing duties at Discovery News and Al Jazeera English. If you’re ever wondering where I’ve disappeared to, check in on my Twitter feed, I tweet a lot!

Curiosity’s Monster Dust-Covered Wheels in MAHLI Definition

On Sol 34, Curiosity's Mars Hand Lens Imager (MAHLI) captured images of the rover's dusty wheels. Credit: NASA/JPL-Caltech
On Sol 34, Curiosity’s Mars Hand Lens Imager (MAHLI) captured images of the rover’s dusty wheels. Credit: NASA/JPL-Caltech

Late on Sunday night, NASA’s Mars Science Laboratory (MSL) website had a surprise in store: Curiosity’s recently un-capped robotic arm-mounted Mars Hand Lens Imager (MAHLI) snapped some incredible photographs of the rover’s undercarriage and its calibration target. Shown above is my favorite pic, detailing dust on two of the rover’s wheels. Shown below is an image of Curiosity’s set of front Hazcams (left and right pairs).

Curiosity's front Hazcams as imaged by the robotic arm-mounted MARDI camera. Credit: NASA/JPL-Caltech
Curiosity’s front Hazcams as imaged by the robotic arm-mounted MARDI camera. Credit: NASA/JPL-Caltech