Wonky Star Systems May Be Born That Way

A nearby baby star has been discovered with a warped protoplanetary disk — a feature that may reveal the true nature of the solar system’s planetary misalignments

[RIKEN]

Textbook descriptions of our solar system often give the impression that all the planets orbit the sun in well-behaved near-circular orbits. Sure, there’s a few anomalies, but, in general, we’re led to believe that everything in our interplanetary neighborhood travels around the sun around a flat orbital plane. This, however, isn’t exactly accurate.

Pluto, for example, has an orbit around the sun that is tilted by over 17 degrees out of the plane of the ecliptic (an imaginary flat plane around which the Earth orbits the sun). Mercury has an inclination of seven degrees. Even Venus likes to misbehave and has an orbital inclination of over three degrees. If all the material that built the planets originated from the same protoplanetary disk that was — as all the artist’s impressions would have us believe — flat, what knocked all the planet’s out of alignment with the ecliptic?

Until now, it was assumed that, during the early epoch of our solar system’s planet-forming days, dynamic chaos ruled. Planets jostled for gravitational dominance, Jupiter bullied smaller worlds into other orbits (possibly chucking one or two unfortunates into deep space), and gravitational instabilities threw the rest into disorderly orbital paths. Other star systems also exhibit this orbital disorder, so perhaps it’s just an orbital consequence of a star system’s growing pains.

But there might be another contribution to the chaos: perhaps wonky star systems were just born that way.

Cue a recent observation campaign of the nearby baby star L1527. Located 450 light-years away in the direction of the Taurus Molecular Cloud, L1527 is a protostar embedded in a thick protoplanetry disk. Using the Atacama Large Millimeter/submillimeter Array (ALMA), in Chile, astronomers of the RIKEN Cluster for Pioneering Research (CPR) and Chiba University in Japan discovered that the L1527 disk is actually two disks morphed into one — both of which are out of alignment with one another. Imagine a vinyl record that has been left on a heater and you wouldn’t be far off visualizing what this baby star system looks like.

The RIKEN study, published on Jan. 1 in Nature, suggests that this warping may have been caused by jets of material emanating from the star’s birth, kicking planet-forming material into this warped configuration and, should this configuration remain stable, could result in planets with orbital planes that are significantly out of alignment.

“This observation shows that it is conceivable that the misalignment of planetary orbits can be caused by a warp structure formed in the earliest stages of planetary formation,” said team leader Nami Sakai in a RIKEN press release. “We will have to investigate more systems to find out if this is a common phenomenon or not.”

It’s interesting to think that if this protoplanetary disk warping is due to the mechanics behind the formation of the star itself, we might be able to look at mature star systems to see the ancient fingerprint of a star’s earliest outbursts or, possibly, its initial magnetic environment.

It’s possible “that irregularities in the flow of gas and dust in the protostellar cloud are still preserved and manifest themselves as the warped disk,” added Sakai. “A second possibility is that the magnetic field of the protostar is in a different plane from the rotational plane of the disk, and that the inner disk is being pulled into a different plane from the rest of the disk by the magnetic field.”

Though orbital chaos undoubtedly contributed to how our solar system looks today, with help of this research, we may be also getting a glimpse of how warped our sun’s protoplanetry disk may have been before the planets even formed.

Our Universe Is a Cosmic Mixologist Looking for the Recipe of Life

Creating the conditions of interstellar space in the lab has led to a sweet discovery

The Egg Nebula, as imaged by Hubble, is a protoplanetary nebula with a young star in its core [NASA/ESA]

What do you get if you combine water with methanol and then bombard the mix with radiation? It turns out that the resulting cocktail is where the building blocks for life are found. But these chemicals aren’t bubbling out of the puddles of primordial goo pooling on some alien planet; the cocktail shaker is the frigid depths of interstellar space and the mixologist is the universe.

As described in a new study published on Tuesday in Nature Communications, a team of NASA scientists took what they knew of interstellar space and recreated it in a laboratory experiment. Interstellar space may not seem like a place where the chemistry of life could gain a foothold, but given enough time and the right ingredients, chemical reactions do happen — albeit very slowly. And if there’s one thing the universe has it’s time, and we’re beginning to understand that the cosmos we reside in could be a vast organic experiment.

“The universe is an organic chemist,” said Scott Sandford, a senior scientist in the NASA Ames Astrophysics and Astrochemistry Laboratory and co-investigator of the study. “It has big beakers and lots of time — and the result is a lot of organic material, some of which is useful to life.” 

To see what chemistry might be going on in the void between the stars, the researchers simulated this extreme environment inside a vacuum chamber at Ames that was cooled to near-absolute zero. Inside, they placed an aluminum substance and then added the gaseous mixture of water vapor and methanol, a very common carbon-based molecule that is known to exist throughout our galaxy. Holding the aluminum at such low temperatures caused a frosty layer to form upon it. Then, they irradiated the substance with ultraviolet light — a form of radiation that is abundant in stellar nurseries, for example — and found that some interesting chemical reactions had occurred.

They discovered that a variety of sugar derivatives had formed on the substance — and one of those sugars was 2-deoxyribose. Yes, the same stuff you’d find in deoxyribonucleic acid. That’s the “D” in our DNA.

But this isn’t the first time an essential ingredient for life has been created in the lab while simulating the conditions of interstellar space. In 2009, the same team announced the discovery of uracil in their laboratory experiments — a key component of ribonucleic acid (RNA), which is central to protein synthesis in living systems. Also, in 2016, a French group discovered the formation of ribose, the sugar found in RNA.

“For more than two decades we’ve asked ourselves if the chemistry we find in space can make the kinds of compounds essential to life. So far, we haven’t picked a single broad set of molecules that can’t be produced,” said Sandford in a NASA statement. 

Although these are significant discoveries that provide new insights to how and where the most basic ingredients for life may form, it’s a long way from helping us understand whether or not life is common throughout the universe. But it turns out that some of the coldest spaces in the cosmos could also be the most fertile environments for the formation of a range of chemicals that are essential for life on Earth. It’s not such a reach, then, to realize that the protoplanetary disks surrounding young stars will also contain these chemicals and, as planets form, these chemicals become an intrinsic ingredient in young planets, asteroids and comets. Over four billion years ago, when the planets condensed from our baby Sun’s nebulous surroundings, Earth may have formed with just the right abundance of molecules that form the backbone of DNA and RNA to kick-start the genesis of life on our planet. Or those ingredients were delivered here later in the frozen cores of ancient comets and asteroids.

The building blocks of life are probably everywhere, but what “spark” binds these chemicals in such a way that allows life to evolve? This question is probably well beyond our understanding for now, but it seems that if you give our Cosmic Mixologist enough time to concoct all the chemicals for life, life will eventually emerge from the cocktail.

If Aliens Pilot Interstellar Object ‘Oumuamua, They Snubbed Us

The Seti Institute has monitored the object for radio transmissions, just in case it isn’t natural

We humans are a sensitive bunch. We keep pondering the question: “are we alone?” If we consider the answer is a “yes,” we then start having an existential crisis over our place in the universe. But if the answer is a “no,” a can of worms open and we start asking even more questions. “If they’re out there, where are they?” “Isn’t it a bit weird we haven’t heard from our extraterrestrial neighbors?” “Are they just too far away for us to communicate?” and my personal favorite: “Have they consciously decided not to communicate with us because we’re considered not worth communicating with?!” The Fermi Paradox is certainly as paradoxical as they come.

Cue a random object that cruised through our solar system last year. The interstellar visitor zoomed right into our interplanetary neighborhood, used the Sun’s gravity for a cheeky course correction, and then slingshotted itself back out into deep space. The whole thing happened so quickly that astronomers only noticed when the thing was speeding away from us at high speed.

Naturally, we took a hint from science fiction, remembering Arthur C. Clarke’s classic novel “Rendezvous With Rama” — when a huge artificial object appears from interstellar space and a brave team of astronauts are sent to intercept it. Might this interstellar object also be artificial? After all, it has an odd, tumbling shape (like a spinning cigar) and the precision at which it flew past us with the trajectory it did (using the Sun to change its direction and speed of travel) just feels artificial.

So, with the help of the SETI Institute’s Allen Telescope Array (ATA) in California, astronomers decided to take aim at the departing object from 
Nov. 23 and Dec. 5, 2017, when it was 170 million miles from Earth. The objective was to listen out for artificial radio transmissions that might reveal any kind of extraterrestrial intelligence. By monitoring frequencies from 1 to 10 GHz (at 100 MHz intervals), the ATA would be able to detect a very low powered onmidirectional transmitter, with a transmitting power as low as 10 Watts — the approximate equivalent to a citizen band radio.

According to the SETI study to be published in the February 2019 issue of Acta Astronautica, no signals were detected. Though this is obviously a blow for working out whether this thing was being actively piloted by some kind of intelligence, it does narrow down the true nature of the object, that has since been named ‘Oumuamua — which, in Hawaiian, roughly means “scout,” or “messenger.”

“We were looking for a signal that would prove that this object incorporates some technology — that it was of artificial origin,” said Gerry Harp, lead author of the study, in a SETI Institute statement. “We didn’t find any such emissions, despite a quite sensitive search. While our observations don’t conclusively rule out a non-natural origin for ‘Oumuamua, they constitute important data in assessing its likely makeup.”

Although this doesn’t prove ‘Oumuamua isn’t an alien spacecraft, it does put limits on the frequencies it could be transmitting on, if it is transmitting. And even if it isn’t transmitting, it doesn’t mean it’s not artificial. Could it be an ancient spacecraft that’s been sailing the interstellar seas for millions or billions of years, long after its intelligent occupants have died? Or long after its artificial intelligence has run out of energy? 

Or — and this is the big one — did it zoom through our solar system, aware of our presence, and not bother communicating with us? If that scenario played out, we need to re-open that can o’ worms and try to understand where we stand in the universal ecosystem of competing intelligences. Perhaps we are the cosmic equivalent of an ant colony; our intelligence just isn’t worth the time when compared with the unimaginable alien intelligences that have the technology to send ‘Oumuamuas to probe distant star systems for life.

Alas, it’s probably a case of Occam’s razor, where the simplest explanation is most likely the correct one: ‘Oumuamua is probably a strange-looking asteroid or ancient comet that was randomly shot at us by some distant star system and astronomers were lucky to detect it. But, we still need to ponder the least likely explanations, you just never know…

Here’s a Glimpse of the Jaw-Dropping Physics Surrounding Our Supermassive Black Hole

Simulation of Material Orbiting close to a Black Hole
Simulation of material orbiting close to a black hole (ESO/Gravity Consortium/L. Calçada)

Full disclosure: I wrote the press release for the University of Waterloo, whose researcher, Avery Broderick, developed the theory behind the accretion disk hotspots that have now been observed immediately surrounding our galaxy’s supermassive black hole. Read the full release on the UW website. Below is a long-form version of my article, including quotes from my interview with Broderick.

New observations of the center of our galaxy have, for the first time, revealed hotspots in the disk of chaotic gas orbiting our Milky Way’s supermassive black hole, Sagittarius A* (Sgr A*).

Using the tremendous resolving power of the ESO’s Very Large Telescope array in Chile, astronomers used the new GRAVITY instrument to detect the “wobble” of bright patches embedded inside the accretion disk that spins with the black hole. These bright features are clocking speeds of 30 percent the speed of light.

This is the first time any feature so close to a black hole’s event horizon has been seen and, using thirteen-year-old predictions by astrophysicists, we have a good idea about what’s causing the fireworks.

“It’s mind-boggling to actually witness material orbiting a massive black hole at 30 percent of the speed of light,” said scientist Oliver Pfuhl, of the Max Planck Institute for Extraterrestrial Physics and co-investigator of the study published in the journal Astronomy & Astrophysics. “GRAVITY’s tremendous sensitivity has allowed us to observe the accretion processes in real time in unprecedented detail.”

It is thought that the accretion disk surrounding a black hole is threaded with a powerful magnetic field that frequently becomes unstable and “reconnects.” Similar to the physics that drives the explosive flares in the Sun’s lower corona, these reconnection events rapidly accelerate the plasma in the disk, discharging vast quantities of radiation. These flaring events inside Sgr A*’s accretion disk create hotspots that get pulled in the direction of the material’s spin as it slowly gets digested by the black hole. The GRAVITY instrument was able to deduce that the accretion disk material is orbiting the black hole in a clockwise direction from our perspective and the accretion disk is almost face-on.

Artist’s impression of a hot accretion disk surrounding a black hole [NASA]
The original theory behind these hotspots was derived by Avery Broderick (University of Waterloo) and Avi Loeb (Harvard University) when they were both working at Harvard-Smithsonian Center for Astrophysics in the mid-2000s. In 2005 and 2006, the pair published papers that described theoretical computer models that simulated reconnection events in a black hole’s accretion disk, which caused intense heating and bright flares. The resulting hotspot would then continue to orbit with the speeding accretion disk material, cooling down and spreading out, before another instability and reconnection event would be triggered.

Their work was inspired by the detection of enigmatic bright flares erupting in the vicinity of Sgr A*. These flares were powerful and regular, occurring almost daily. At the time, a few theories were being explored—from supernovas detonating near the supermassive black hole, to asteroids straying too close to the black hole’s gravitational maw—but Broderick and Loeb decided to focus on the extreme region immediately surrounding the black hole’s event horizon.

“Avi and I thought: ‘well, if the flare timescales are close to orbital timescales around the black hole, wouldn’t it be interesting if they are actually bright features embedded in the accretion flow orbiting close to it?’,” Broderick told me.

Black holes are gravitational masters of their domain; anything that drifts too close will be blended into a superheated disk of plasma surrounding them. The matter trapped in the accretion disk then flows toward the event horizon—the point at which nothing, not even light, can escape—and consumed by the black hole via mechanisms that aren’t yet fully understood. The researchers knew that if their model was an accurate depiction of what is going on in the core of our galaxy, these hotspots could be used as visual probes to trace out structures in the accretion disk and in space-time itself.

This plot shows a comparison of the data with the hotspot model including various effects of General and Special Relativity. The continuous blue curve denotes a hot spot on a circular orbit with 1.17 times the innermost stable circular orbit, i.e. just outside the event horizon, of a 4 million solar mass black hole. The axis give the offset from the center in micro-arcseconds [MPE/GRAVITY collaboration]
It’s Sgr A*’s gravity of 4 million Suns that gives the flares a super-boost, however. “In our orbiting hotspot model, a key component of the brightening is actually caused by gravitational lensing,” added Broderick, referring to a consequence of Einstein’s general relativity, when the gravity of black holes warp space-time so much as to form lenses that can magnify the light from distant astronomical sources. “It’s like a black hole analog of a lighthouse.”

Now that GRAVITY has confirmed the existence of these hotspots, Broderick is overjoyed.

“I’m still absorbing it; it’s extremely exciting,” he said. “I’m bouncing around a little bit! The fact you can track these flares is completely new, but we predicted that you could do this.”

The GRAVITY study is led by Roberto Abuter of the European Southern Observatory (ESO), in Garching, Germany, and it describes the detection of three flares emanating from Sgr A* earlier this year. Although the hotspots cannot be fully resolved by the VLT, with the help of Broderick and Loeb’s predictions, Abuter’s team recognized the “wobble” of emissions from the flares as their associated hotspots orbited the supermassive black hole.

This discovery opens a brand-new understanding of the environment immediately surrounding Sgr A* and will complement observations made by the Event Horizon Telescope (EHT), an international collaboration of radio telescopes that are currently taking data to acquire the first image of a black hole, which is expected early next year.

Broderick hopes that these advances will help us to understand how black holes grow and consume matter, and if the predictions of general relativity break down at one of the most gravitationally extreme environments in the universe. But he’s most excited about how the first EHT image of a black hole will impact society as a whole: “It’s going to be a wonderful event, I think it will be an iconic image and it will make black holes real to a lot of people, including a lot of scientists,” he said.

Aside: In 2016, I had the incredible good fortune to visit the VLT at the ESO’s Paranal Observatory as part of the #MeetESO event. I interviewed several VLT and ALMA scientists, including Oliver Pfuhl, and helped produce the mini-documentary below:

Hitching a Ride on an ‘Evolving Asteroid’ to Travel to the Stars

evolvingaste
The interstellar asteroid spaceship concept that would contain all the resources required to maintain a generations of star travelers (Nils Faber & Angelo Vermeulen)

When ʻOumuamua visited our solar system last year, the world’s collective interest (and imagination) was firing on all cylinders. Despite astronomers’ insistence that asteroids from other star systems likely zip through the solar system all the time (and the reason why we spotted this one is because our survey telescopes are getting better), there was that nagging sci-fi possibility that ʻOumuamua wasn’t a natural event; perhaps it was an interstellar spaceship piloted by (or at least once piloted by) some kind of extraterrestrial — “Rendezvous With Rama“-esque — intelligence. Alas, any evidence for this possibility has not been forthcoming despite the multifaceted observation campaigns that followed the interstellar vagabond’s dazzling discovery.

Still, I ponder that interstellar visitor. It’s not that I think it’s piloted by aliens, though that would be awesome, I’m more interested in the possibilities such objects could provide humanity in the future. But let’s put ʻOumuamua to one side for now and discuss a pretty nifty project that’s currently in the works and how I think it could make use of asteroids from other stars.

Asteroid Starships Ahoy!

As recently announced by the European Space Agency, researchers at Delft University of Technology, Netherlands, are designing a starship. But this isn’t your run-of-the-mill solar sail or “warpship.” The TU Delft Starship Team, or DSTART, aims to bring together many science disciplines to begin the ground-work for constructing an interstellar vehicle hollowed out of an asteroid.

Obviously, this is a long-term goal; humanity is currently having a hard enough time becoming a multiplanetary species, let alone a multistellar species. But from projects like these, new technologies may be developed to solve big problems and those technologies may have novel applications for society today. Central to ESA’s role in the project is an exciting regenerative life-support technology that is inspired by nature, a technology that could reap huge benefits not only for our future hypothetical interstellar space fliers.

Called the MELiSSA (Micro-Ecological Life Support System Alternative) program, scientists are developing a system that mimics aquatic ecosystems on Earth. A MELiSSA pilot plant in Barcelona is capable of keeping rat “crews” alive for months at a time inside an airtight habitat. Inside the habitat is a multi-compartment loop with a “bioreactor” at its core, which consists of algae that produces oxygen (useful for keeping the rats breathing) while scrubbing the air of carbon dioxide (which the rats exhale). The bioreactor was recently tested aboard the International Space Station, demonstrating that the system could be applied to a microgravity environment.

Disclaimer: Space Is Really Big

Assuming that humanity isn’t going to discover faster-than-light (FTL) travel any time soon, we’re pretty much stuck with very pedestrian sub-light-speed travel times to the nearest stars. Even if we assume some sensible iterative developments in propulsion technologies, the most optimistic projections in travel time to the stars is many decades to several centuries. While this is a drag for our biological selves, other research groups have shown that robotic (un-crewed) missions could be done now — after all, Voyager 1 is currently chalking up some mileage in interstellar space and that spacecraft was launched in the 1970’s! But here’s the kicker: Voyager 1 is slow (even if it’s the fastest and only interstellar vehicle humanity has built to date). If Voyager 1 was aimed at our closest star Proxima Centauri (which it’s not), it would take tens of thousands of years to get there.

But say if we could send a faster probe into interstellar space? Projects like Icarus Interstellar and Breakthrough Starshot are approaching this challenge with different solutions, using technology we have today (or technologies that will likely be available pretty soon) to get that travel time down to less than one hundred years.

One… hundred… years.

Sending robots to other stars is hard and it would take generations of scientists to see an interstellar mission through from launch to arrival — which is an interesting situation to ponder. But add human travelers to the mix? The problems just multiplied.

The idea of “worldships” (or generation ships) have been around for many years; basically vast self-sustaining spaceships that allow their passengers to live out their lives and pass on their knowledge (and mission) to the next generation. These ships would have to be massive and contain everything that each generation needs. It’s hard to comprehend what that starship would look like, though DSTART’s concept of hollowing out an asteroid to convert it into an interstellar vehicle doesn’t sound so outlandish. To hollow out an asteroid and bootstrap a self-sustaining society inside, however, is a headache. Granted, DSTART isn’t saying that they are actually going to build this thing (their project website even states: “DSTART is not developing hardware, nor is it building an actual spacecraft”), but they do assume some magic is going to have to happen before it’s even a remote possibility — such as transformative developments in nanotechnology, for example. The life-support system, however, would need to be inspired by nature, so ESA and DSTART scientists are going to continue to help develop this technology for self-sustaining, long-duration missions, though not necessarily for a massive interstellar spaceship.

Hyperbolic Space Rocks, Batman!

Though interesting, my reservation about the whole thing is simple: even if we did build an asteroid spaceship, how the heck would we accelerate the thing? This asteroid would have to be big and probably picked out of the asteroid belt. The energy required to move it would be extreme; to propel it clear of the sun’s gravity (potentially via a series of gravitational assists of other planets) could rip it apart.

So, back to ʻOumuamua.

The reason why astronomers knew ʻOumuamua wasn’t from ’round these parts was that it was moving really, really fast and on a hyperbolic trajectory. It basically barreled into our inner star system, swung off our sun’s gravitational field and slingshotted itself back toward the interstellar abyss. So, could these interstellar asteroids, which astronomers estimate are not uncommon occurrences, be used in the future as vehicles to escape our sun’s gravitational domain?

Assuming a little more science fiction magic, we could have extremely advanced survey telescopes tasked with finding and characterizing hyperbolic asteroids that could spot them coming with years of notice. Then, we could send our wannabe interstellar explorers via rendezvous spacecraft capable of accelerating to great speeds to these asteroids with all the technology they’d need to land on and convert the asteroid into an interstellar spaceship. The momentum that these asteroids would have, because they’re not gravitationally bound to the sun, could be used as the oomph to achieve escape velocity and, once setting up home on the rock, propulsion equipment would be constructed to further accelerate and, perhaps, steer it to a distant target.

If anything, it’s a fun idea for a sci-fi story.

I get really excited about projects like DSTART; they push the limits of human ingenuity and force us to find answers to seemingly insurmountable challenges. Inevitably, these answers can fuel new ideas and inspire younger generations to be bolder and braver. And when these projects start partnering with space agencies to develop existing tech, who knows where they will lead.

Proxima Centauri Unleashes ‘Doomsday’ Flare

Proxima b just got roasted.

flarestar
Proxima b weather report: Sunny with the chance of a flare of doom (NASA)

Having a bad day? Well, spare a thought for any hypothetical aliens living on Proxima b.

Proxima Centauri is a small, dim M dwarf—commonly known as a red dwarf—located approximately 4.2 light-years away. Over the last couple of years, this diminutive star has spent a lot of time in the headlines after the discovery of a small rocky world, called Proxima b, inside the star’s habitable zone.

With the knowledge that there’s a potentially temperate world on our cosmic doorstep, speculation started to fly that this exoplanet could become a future interstellar destination for humanity or that it’s not just a “habitable” world, perhaps it’s inhabited, too.

Putting aside the fact that we have no idea whether this interesting exoplanet possesses water of any kind, let alone if it even has an atmosphere (two pretty important ingredients for life as we know it), it is certainly an incredible find. But there are some caveats to Proxima b’s habitability and the main one is the unpredictability of its star.

The problem with red dwarfs is that they are angry little stars. In fact, they have long been known as “flare stars” as, well, they produce flares. What they lack in energy output they certainly make up for in explosions. Really, really big explosions.

Last March, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile detected a cataclysmic stellar flare erupting from Proxima Centauri, and this thing put anything our Sun can produce to shame.

“March 24, 2017, was no ordinary day for Proxima Cen,” said astronomer Meredith MacGregor, of the Carnegie Institution for Science in Washington D.C., in a statement.

Over just ten seconds on that special day, a powerful flare boosted Proxima Centauri’s brightness by over 1,000 times greater than normal. This mega-flare event was preceded by a smaller flare event and both flares occurred over a two minute period.

nrao18cb03b
The brightness of Proxima Centauri as observed by ALMA over the two minutes of the event on March 24, 2017 (Meredith MacGregor, Carnegie)

Although astronomers have little idea where Proxima b was in relation to the flaring site, it would have undoubtedly received one hell of a radiation dose from the eruption.

“It’s likely that Proxima b was blasted by high energy radiation during this flare,” said MacGregor. “Over the billions of years since Proxima b formed, flares like this one could have evaporated any atmosphere or ocean and sterilized the surface, suggesting that habitability may involve more than just being the right distance from the host star to have liquid water.”

The habitable zone around any star is the distance at which a world must orbit to receive just the right amount of energy to maintain water in a liquid state. Liquid water, as we all know, is necessary for life (as we know it) to evolve. Whereas the Earth orbits the Sun at an average distance of nearly 100 million miles (a distance that unsurprisingly puts us inside our star’s habitable zone), for a star as cool as Proxima Centauri, its habitable zone is closer. Much, much closer. This means Proxima b, with an orbital distance of approximately 4.6 million miles, is nearly 22 times closer to its star than the Earth is to the Sun. Orbiting so close to a star pumping out a flare ten times more powerful than the largest flare our Sun can generate is the space weather equivalent of sitting inside the blast zone of a nuclear weapon.

As MacGregor argues, Proxima Centauri is known to generate these kinds of flares, and Proxima b has been bathed in its radiation for eons. It doesn’t seem likely that the exoplanet would be able to form an atmosphere, let alone hold onto one.

So, what of Proxima b’s hypothetical aliens? Well, unless they’ve found a niche deep under layers of ice and/or rock, it seems that this “habitable” world is anything but.

For more on why Proxima b would be a bad place to take your honeymoon, read
Sorry, Proxima Centauri Is Probably a Hellhole, Too.

Exocomets Seen Transiting Kepler’s Stars

exocomets
ESO/L. Calçada

If you thought detecting small planets orbiting stars dozens of light-years distant was impressive, imagine trying to “see” individual comets zoom around their star. Well, astronomers have done just that after poring over 201,250 targets in the Kepler dataset.

NASA’s Kepler mission has been taking observational data since 2009, staring unblinkingly at a small area of sky in the direction of the constellation Cygnus until it transitioned into the K2 mission in 2013. In total, the space telescope has discovered over 2,500 confirmed exoplanets (and over 5,000 candidate exoplanets), transforming our understanding of the incredible menagerie of alien worlds in our galaxy. After including discoveries by other observatories, we know of over 3,500 exoplanets that are out there.

kepler-exoplanets
Kepler looks for very slight dips in light as exoplanets pass in front of their stars to detect alien worlds (NASA/JPL-Caltech)

Kepler detects exoplanets by watching out for periodic dips in the brightness of stars in its field of view. Should a slight dip in brightness be detected, it could mean that there’s an exoplanet orbiting in front of its host star—an event known as a “transit.” While these transits can help astronomers learn about the physical size of exoplanets and the period of their orbits, for example, there’s much more information in the transit data than initially meets the eye.

In a new study to be published in the journal Monthly Notices of the Royal Astronomical Society on Feb. 21, a team of researchers are reporting that they have found evidence for individual comets transiting in front of two stars. They detected six individual transits at the star KIC 3542116, which is located approximately 800 light-years from Earth, and one transit at KIC 11084727. Both stars of a similar type (F2V) and are quite bright.

Though other observations have revealed dusty evidence of cometary activity in other star systems before, this is the first time individual comets have been found leaving their own transit signal in Kepler data. And it turns out that their transit fingerprint is a little bit special:

comet-transits
One comet’s three transits around its host star, KIC 3542116. Credit: Rappaport et al. MNRAS 474, 1453, 2018.

“The transits have a distinct asymmetric shape with a steeper ingress and slower egress that can be ascribed to objects with a trailing dust tail passing over the stellar disk,” the astronomers write in their paper (arXiv preprint). “There are three deeper transits with depths of ≃ 0.1 percent that last for about a day, and three that are several times more shallow and of shorter duration.”

In other words, when compared with the transit of an exoplanet, comet transits appear wonky (or asymmetric). This is because comets possess tails of gas and dust that trail the nucleus; as the comet passes in front of its star, starlight is quickly blocked, but as it drifts by in its orbit, the dusty tail will act as a starlight dimmer, gradually allowing more starlight to be seen by Kepler. An exoplanet—or, indeed, any spherical object without a dusty tail—will create a symmetrical dip in the transit signal. Other possible causes of this unique transit signal (such as starspots and instrumental error) were systematically ruled out. (Interestingly, in a 1999 Astronomy & Astrophysics paper, this asymmetric comet transit signal was predicted by another team of researchers, giving this current work some extra certainty.)

But just because there was evidence of six comet transits at KIC 3542116, it doesn’t mean there were six comets. Some of those transits could have been caused by the same comet, so the researchers have hedged their bets, writing: “We have tentatively postulated that these are due to between 2 and 6 distinct comet-like bodies in the system.”

Using these transit data, the study also takes a stab at how big these comets are and even estimates their orbital velocities. The researchers calculate that these comets have masses that are comparable to Halley’s Comet, the famous short-period comet that orbits the sun every 74-79 years and was last visible from Earth in 1986. For the deeper transits (for KIC 3542116 and the single transit at KIC 11084727), they estimate that the comets causing those transits are travelling at speeds of between 35 to 50 kilometers per second (22 to 31 miles per second). For the shallow, narrow transits at KIC 3542116, the inferred speeds are between 75 to 90 kilometers per second (47 to 56 miles per second).

“From these speeds we can surmise that the corresponding orbital periods are ⪆ 90 days (and most probably, much longer) for the deeper transits, and ⪆ 50 days for the shorter events,” they write.

But the fact that comets were detected at two similar F2V-type stars gives the researchers pause. Is there something special about these stars that means there’s more likelihood of possessing comets? Or is it just chance? Also, the fact that these comet transits were identified by visually analyzing the Kepler datasets suggests that there are likely many more transits hiding in the archived Kepler observations.

One thing’s for sure: this is a mind-blowing discovery that underscores just how valuable exoplanet-hunting missions are for probing the environment around other stars and not just for discovering strange new worlds. I’m excited for what other discoveries are waiting in Kepler transit data and for future exoplanet-hunting missions such as NASA’s Transiting Exoplanet Survey Satellite (TESS) that is scheduled for launch this year.

Black Hole’s Personality Not as Magnetic as Expected

V404Cyg_XRT_halo_fullsize
This 2015 NASA Swift observation of V404 Cygni shows the X-ray echoes bouncing off rings of dust surrounding the binary system after the X-ray nova (Andrew Beardmore/Univ. of Leicester/NASA/Swift)

In 2015, a stellar-mass black hole in a binary star system underwent an accretion event causing it to erupt brightly across the electromagnetic spectrum. Slurping down the plasma from its stellar partner — an unfortunate sun-like star — the eruption became a valuable observation for astronomers and, in a recent study, researchers have used the event to better understand the magnetic environment surrounding the black hole.

The binary system in question is V404 Cygni, located 7,795 light-years from Earth, and that 2015 outburst was an X-ray nova, an eruption that previously occurred in 1989. Detected by NASA’s Swift space observatory and the Japanese Monitor of All-sky X-ray Image (MAXI) on board the International Space Station, the event quickly dimmed, a sign that the black hole had consumed its stellar meal.

Combining these X-ray data with observations by radio, infrared and optical telescopes, an international team of astronomers were able to measure emissions from the plasma close to the black hole’s event horizon as it cooled.

The black hole was formed after a massive star ran out of fuel and exploded as a supernova. Much of the magnetism of the progenitor star would have been retained post-supernova, so by measuring the emissions from the highly charged plasma, astronomers have a tool to probe deep inside the black hole’s “corona.” Like the sun’s corona — which is a magnetically-dominated region where solar plasma interacts with our star’s magnetic field (producing the solar wind and solar flares, for example) — it’s predicted that there should be a powerful interplay between the accreting plasma and the black hole’s coronal magnetism.

As charged particles interact magnetic fields, they experience acceleration radially (i.e. they spin around the magnetic field lines that guide their direction of propagation) and, should the magnetism be extreme (in a solar or, indeed, black hole’s corona), this plasma can be accelerated to relativistic speeds. In this case, synchrotron radiation may be generated. By measuring the radiation across all wavelengths, astronomers can thereby probe the magnetic environment close to a black hole as this radiation is directly related to how powerful a magnetic field is generating it.

black-hole
A black hole with a magnetic field threading through an accretion disk (ESO)

According to the study, published in the journal Science on Dec. 8, V404 Cygni’s hungry black hole has a much weaker magnetic field than theory would suggest. And that’s a bit of a problem.

The researchers write: “Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems.”

Black holes are poorly understood, but with the advent of gravitational wave (and “multimessenger”) astronomy and the excitement surrounding the Event Horizon Telescope, in the next few years we’re going to get a lot more intimate with these gravitational enigmas. Why this particular black hole’s magnetic environment is weaker than what would be expected, however, suggests that our theories surrounding black hole evolution are incomplete, so there will likely be some surprises in store.

“We need to understand black holes in general,” said collaborator Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), in a statement. “If we go back to the very earliest point in our universe, just after the Big Bang, there seems to have always been a strong correlation between black holes and galaxies. It seems that the birth and evolution of black holes and galaxies, our cosmic island, are intimately linked. Our results are surprising and one that we’re still trying to puzzle out.”

The Winter 2018 Edition of Mercury Magazine Is Now Live!

social
The front cover of the Winter 2018 edition of Mercury (vol. 47, No. 1)

As many of you know, I became editor of Mercury magazine last year and my first edition is now live!

Mercury is a publication by the Astronomical Society of the Pacific (ASP), an awesome non-profit organization based out of San Francisco that has been working for over 125 years to advance science education, science literacy and astronomy appreciation around the world. Mercury is a part of the ASP’s mission and has been in publication for members since 1972. I’m deeply honored that the ASP has entrusted me with the magazine.

The Winter 2018 edition, which can now be downloaded via the members’ portal, is packed with great articles and columns by astronomers, science writers and education professionals, tackling everything from the Event Horizon Telescope to how the Arecibo Observatory is recovering after Hurricane Maria. We also have more on gravitational waves and multimessenger astronomy, doomed dwarf galaxies, mysteries in the galactic halo, sunspot history, interstellar asteroids, how to teach astronomy in a world filled with misinformation and news from the ASP’s annual conference in St. Louis.

To read this edition and be involved in the ASP’s mission, you have to be a member, but for a sneak peek of what is waiting for you inside this quarter’s edition of Mercury and my first as editor, you can review the contents and read some select excerpts here.

I’m excited to embark on this new adventure and can’t wait to begin planning for the Spring edition!

Tabby’s Star Dust-Up: There’s No Alien Megastructure

sk-2017_04_article_main_desktop
Sadly, not aliens (NASA/Getty/Ian O’Neill)

If you were hoping that the bizarre transit signals coming from Tabby’s Star were signs of a massive alien construction site, you’d better sit down.

A new study published in Astrophysical Journal Letters today documents a highly-detailed astronomical study of the star, concluding that this stellar oddity is driven by natural phenomena and most likely not caused by an extraterrestrial intelligence.

Since citizen scientists of the exoplanet project Planet Hunters identified the odd transit signal of KIC 8462852 from publicly-available data collected by NASA’s Kepler Space Telescope in 2015, the world has been captivated by what it means. Though KIC 8462852 is a fairly average star as stars go, it exhibited inexplicable dimming events that have never been seen before.

Finding something extraordinary in deep space is often followed by extraordinary explanations, including the possibility that some super-advanced alien civilization is building a “megastructure” around its star. Over time, more rational hypotheses have been ruled out, but how do you rule out aliens fiddling with their star’s brightness? Well, that’s taken a little more time.

Now, thanks to a study headed by astronomer Tabetha Boyajian of Louisiana State University in Baton Rouge, it seems the alien megastructure hypothesis has bitten the dust, literally.

“Dust is most likely the reason why the star’s light appears to dim and brighten,” Boyajian said in a statement. “The new data shows that different colors of light are being blocked at different intensities. Therefore, whatever is passing between us and the star is not opaque, as would be expected from a planet or alien megastructure.”

As you’d expect, if something solid (like a massive Alien Made™ solar energy collector) were to pass in front of a star, all wavelengths of light would be stopped at the same time. The fact that the dimming events are wavelength (brightness) dependent suggests that whatever is blocking the starlight isn’t a solid mass.

Boyajian, Tabby’s Star’s namesake who led the team that discovered the stellar dimming phenomenon, and her team of over 100 astronomers carried out an unprecedented observation campaign on the star from March 2016 to December 2017 using the Las Cumbres Observatory network. The project was supported by a Kickstarter campaign that raised $100,000 from 1,700 backers.

During the campaign, four distinct dimming events were detected at Tabby’s Star and each were given names by the project’s crowdfunding community. Starting in May 2017, the first two dips were named “Elsie” and “Celeste,” and the second two were named after the lost cities of Scotland’s “Scara Brae” and Cambodia’s “Angkor.”

“They’re ancient; we are watching things that happened more than 1,000 years ago. They’re almost certainly caused by something ordinary, at least on a cosmic scale. And yet that makes them more interesting, not less. But most of all, they’re mysterious.” — from “The First Post-Kepler Brightness Dips of KIC 8462852,” ApJL, 2018

Although the story of the alien megastructure may be coming to an end, this astronomical saga has been an incredible success for science outreach and public engagement with citizen science projects, like Planet Hunters. In this incredible age of astronomy where there’s simply too much data to analyse, scientists are increasingly turning to the public for help in making groundbreaking discoveries.

“If it wasn’t for people with an unbiased look on our universe, this unusual star would have been overlooked,” added Boyajian. “Again, without the public support for this dedicated observing run, we would not have this large amount of data.”

So, the search continues and I, for one, am excited for the next “alien megastructure” mystery …

Read more: The ‘Alien Megastructure’ Star Is Doing Weird Things Again